
Loco-Store: Locality-Based Oblivious
Data Storage

Wenlong Tian , Student Member, IEEE, Ruixuan Li ,Member, IEEE,

Zhiyong Xu, Senior Member, IEEE, and Weijun Xiao, Senior Member, IEEE

Abstract—With the growing popularity of cloud storage, how to prevent information leakage from cloud access patterns attracts great

attention. Oblivious RAM is proposed for this purpose. It is designed for thememory system, andmost existing work focused on

improving performance in themainmemory. Recently, ORAMhas been extended to the cloud environment, and it is called Oblivious

Data Storage. TaoStore, the state-of-the-art oblivious data storage system, integrates the ORAM technology with synchronous I/O

technology to reduce themean response time. As we observed, there is a strong locality existing in user accesses. However, existing

Oblivious Storage research did not consider this. In this article, we propose Loco-Store, an oblivious data storage. In Loco-Store, we

design a novel stash controller scheme that can dynamically group relevant blocks during the oblivious I/O processes.We also propose

a locality-based eviction algorithm to keep the security guarantee. The theoretical proof proves that our scheme keeps the security

definition of ORAM. Finally, we implement a prototype and conduct extensive experiments on real-world datasets. The results show that

Loco-Store can save the network bandwidth consumption up to 39.19 percent, and reduce the overall access time by 26.17 percent

Index Terms—Oblivious data storage, cloud storage, spatial locality, temporal locality

Ç

1 INTRODUCTION

WITH the rapid growth of cloud storage, the demand for
security and privacy of user’s outsourced data keeps

increasing. Although the data content can be protected by
encryption schemes, recent research paper [1] shows that
user’s access patterns in cloud scenarios can still result in
private data leakage to the cloud server.

Traditionally, to prevent the leakage of user’s privacy
information, Oblivious RAM (ORAM) was proposed in 1987
to make memory access pattern oblivious [2]. But, it is not
widely used in real world because of its unacceptable perfor-
mance. Recently, PathORAM [3] has attracted attention in the
research community. It has a simplified algorithm and out-
performs previous ORAM solutions significantly. However,
it still incurs at least 30� more latency than normal memory
access. Wang et al. [4] takes advantage of the buffer-on-board
(BOB) like memory architecture to offload the ORAM opera-
tions into a secure engine. Shafiee et al. [5] reduce the ORAM

access latency by designing a secure DIMM. Zhang et al. [6]
and Fujieda et al. [7] reduce the number of duplicated requests
by removing unnecessary oblivious accesses. There are many
other related works. Most of them are focused on the cache
level in a single computerwith small and fast memory.

In the cloud environment, data are shared by multiple
users. Thus, the security concern on data access pattern leak-
age is more severe. Therefore, ORAM technology has been
extended to relieve this issue in cloud storage. It is denoted as
Oblivious Data Storage. However, directly applying the
ORAM technologywill induce inferior I/Operformance. Cor-
rectly, to keep the obliviousness property of ORAM technol-
ogy, each block request is transmitted into a fetching
operation including itself and a series of other irrelevant
blocks. It results in lots of extra I/O accesses. Herewe defined
that relevant blocks have strong spatial locality, and hot
blocks have high temporal locality. To improve the perfor-
mance, Stefanov et al. proposed a distributed ORAM-based
Cloud Store by making I/O operations asynchronous [8].
Sahin et al.made a further improvement and designed a tree-
based asynchronous oblivious store by considering asynchro-
nous network communication and concurrent processing of
requests [9]. Although asynchronous I/O can improve the
throughput by decreasing the response time, the oblivi-
ousness property makes it difficult to hold hot blocks and
waste lots of network transmission for irrelevant blocks.

As we know, the data access operations on file or block-
level show high temporal and spatial locality in real-world
scenarios [10]. In the cloud environment, users’ data access
shows strong data locality. Ifwe can store previously accessed
blocks or relevant blocks, and they are requested soon, we do
not have to retrieve from the server again and significantly
reduce network bandwidth consumption. However, existing
oblivious data storage designs do not consider locality.

� Wenlong Tian is with the School of Computer Science and Technology, the
University of South China, Hengyang, Hunan 421001, China.
E-mail: wenlongtian@usc.edu.cn.

� Ruixuan Li is with the School of Computer Science and Technology, the
Huazhong University of Science and Technology, Wuhan, Hubei 430074,
China. E-mail: rxli@hust.edu.cn.

� Zhiyong Xu is with the Math and Computer Science Department, Suffolk
University, Boston, MA 02108 USA , and also with the Shenzhen Institute
of Advanced Technology, the Chinese Academy of Science, Beijing 518000,
China. E-mail: zxu@suffolk.edu.

� Weijun Xiao is with the Electrical and Computer Engineering, Virginia
CommonwealthUniversity, Richmond, VA 23284USA.
E-mail: wxiao@vcu.edu.

Manuscript received 19 Oct. 2019; revised 2 July 2020; accepted 9 July 2020.
Date of publication 15 July 2020; date of current version 14 Mar. 2022.
(Corresponding author: Ruixuan Li.)
Digital Object Identifier no. 10.1109/TDSC.2020.3009428

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 19, NO. 2, MARCH/APRIL 2022 1395

1545-5971 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0003-3177-9099
https://orcid.org/0000-0003-3177-9099
https://orcid.org/0000-0003-3177-9099
https://orcid.org/0000-0003-3177-9099
https://orcid.org/0000-0003-3177-9099
https://orcid.org/0000-0002-7791-5511
https://orcid.org/0000-0002-7791-5511
https://orcid.org/0000-0002-7791-5511
https://orcid.org/0000-0002-7791-5511
https://orcid.org/0000-0002-7791-5511
mailto:wenlongtian@usc.edu.cn
mailto:rxli@hust.edu.cn
mailto:zxu@suffolk.edu
mailto:wxiao@vcu.edu

ORAM randomly groups the blocks based on the oblivious
property to hide the access patterns. Thus, each oblivious
access contains multiple irrelevant blocks. Furthermore, the
random eviction process in ORAM does not align successive
blocks together as well. The stash in ORAM can hardly hold
relevant blocks together since the sets of read/write blocks
are always selected randomly.

In this paper, we are inspired by the successful adoption of
utilizing locality in storage domains, and attempt to integrate
locality and obliviousness, these two technologies together.
We propose a new oblivious data storage architecture, called
Loco-Store. In Loco-Store, instead of hiding the access pattern
by randomly grouping the blocks, we select relevant blocks
and put them together to improve the performance. Mean-
while, our design also keeps the obliviousness feature in the
original ORAMdesign. Thus, we can keep the security prom-
ise. More specifically, we renovate the stash controller design
to reduce the number of oblivious accesses by dynamically
grouping sequentially accessed blocks together to take advan-
tage of spatial locality. It also holds hot data blocks together to
utilize the temporal locality. Besides, a locality-sensitive evic-
tion scheme is also proposed. The main contributions of this
paper are summarized as follow:

� First, we analyze ORAM technology and present its
limitations. Traditional ORAM technology can hardly
align successive blocks together. It cannot retain hot
blocks for future accesses as well. Thus, existing
oblivious data storage build on top of ORAM cannot
utilize the locality property. Each oblivious access
only contains irrelevant blocks.

� Second, we design a new oblivious data storage
architecture, Loco-Store, to integrate the features of
locality and obliviousness in the multi-user envi-
ronment. In Loco-Store, a novel stash controller tak-
ing advantage of both temporal and spatial locality
is designed, and a locality sensitive eviction scheme
is also proposed. Meanwhile, Loco-Store can still
maintain provable security as traditional Oblivious
Data Storage.

� Third, we theoretically formalize our design and jus-
tify its security feature. We prove that, in the cloud
environment, the access pattern in Loco-Store is
computationally indistinguishable with a random
sequence of bit strings.

� Finally, we conduct extensive simulations to ver-
ify the effectiveness of Loco-Store. The experimen-
tal results show that Loco-Store outperforms the
state-of-the-art Oblivious Data Storage solution,
TaoStore. It can save the network bandwidth up to
39.19 percent, and reduce the overall access time by
26.17 percent.

The remaining sections are structured as follows. In
Section 2, we discuss the related work. Then, we introduce
the threat model, Path ORAM, and the limitations of ORAM
technology in Section 3. Next, we design a novel locality-
based Oblivious Data Storage, Loco-Store, to integrate the
locality and obliviousness in Section 4. The proof of Loco-
Store security property is presented in Section 5, and the
experimental results are analyzed in Section 6. Finally, we
conclude the paper in Section 7.

2 RELATED WORK

In this section, we mainly discuss the related work about
Oblivious RAM. We categorize these related work into three
categories, such as the ORAM algorithm’s optimization,
ORAM with novel architectures, and the oblivious Data
storage by utilizing ORAM technology.

ORAMAlgorithm’s Optimization. Although the first Obliv-
ious RAM was proposed by Goldreich and Ostrovsky for
address obfuscation in 1987 [2], Path ORAM [3] is a mile-
stone to saving the bandwidth by its simple and effective
algorithm. It formally proved that the algorithm’s security.
Since then, numerous works have attempts to improve the
performance of the ORAM. For example, Ring ORAM [11],
Bucket ORAM [12] were proposed to reduce the bandwidth
overhead on the memory bus by using different bucket orga-
nization and more complicated access flow control. To fur-
ther improve Path ORAM performance, several techniques
have been proposed. Ren et al.[13] optimized block mapping
using sub-tree layout, which maximizes row buffer hit for
ORAM accesses. They saved the top of the Path ORAM tree
in a small on-chip cache to improve performance. Zhang
et al. [6] eliminated unnecessarymemory accesses if consecu-
tive path accesses have overlaps. Wang et al. [14] proposed
an efficient bandwidth sharing technique, and read and
write phase acceleration for ORAM applications co-run with
other applications on a server with the conventional memory
interface. Ren et al. [15] has improved the performance of
ORAM by introducing the static super block structure and
the dynamical adaptive algorithm. It saves the bandwidth in
ORAMbased on spatial locality property.

ORAM With Novel Architectures. Some other alternatives
(e.g., [16], [17], [18], [19]) leveraged the cooperative computa-
tion with servers or other hardware to further reduce
the communication cost. For example, Onion-ORAM [16]
decrease the bandwidth blowup, where the client and server
interactively run partial homomorphic encryption opera-
tions. Mayberry et al. [17] used PIR scheme in [20] with addi-
tively homomorphic encryption (AHE) (i.e., [21]) on top of
tree ORAM structure [22]. The scheme in [23] used PIR
scheme in [20] on top of ObliviStore [8], which is based on
Partition-ORAM in [24]. The S3ORAM in [25] proposed a dis-
tributed ORAM based on multi-server architecture by intro-
ducing the Shamir Secret Sharing scheme. Besides, Ali et al.
[5] try to improve the ORAM performance by introducing
secure dual in-line memory module (SDIMM), which use a
64-bit data path. It can leverage the SDIMM to reduce band-
width, latency, and energy per ORAM access. Meanwhile,
Rujia et al. [4] also improve the ORAMperformance by taking
a similar idea. They utilize the buffer-on-board (BOB) mem-
ory architecture as the secure delegator to achieving high pri-
vacy protection, and speedup ORAM access. Chandrasekhar
et al. [26] uses a two-level ORAM and reduces the overhead
for the first level by packing most metadata into space typi-
cally used for Error-Correction Codes. Cao et al. [27] propose
a blockchain-based traceable ORAM to detect malicious
behavior. It utilizes the untampered property of blockchain
to integrate the group signaturewith oblivious access.

Oblivious Data Storage by Utilizing ORAM Technology. In
the cloud storage scenario, the semi-honest cloud server is
also eager to master the user’s access pattern. But, most of

1396 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 19, NO. 2, MARCH/APRIL 2022

the existing previous ORAM works are improve the ORAM
performance in the CPU cache level, which always focused
on single-client, sequential ORAM and do not adaptive the
I/O characters in the cloud storage scenario. Stefanov et al.
propose a distributed ORAM-based Cloud Store by making
I/O operations asynchronous [8]. Sahin et al. also propose a
tree-based asynchronous oblivious store by considering
asynchronous network communication and concurrent proc-
essing of requests [9]. Although asynchronous mode can
greatly decrease the response time, it is difficult to reduce the
soaring network bandwidth overhead caused by ORAM
technology. Moreover, substantial files or blocks’ accesses
show strong temporal locality and strong spatial locality in
real scenarios while the existing oblivious storage design
ignores the positive effect from the locality property, which
is the focus of our work.

3 BACKGROUND

In this section, we describe the threat model used in this
paper. Then, we elaborate the access pattern protection pro-
cess in Path ORAM, as a representative of traditional
ORAM technology [3]. Finally, we discuss the limitations of
traditional ORAM solutions.

3.1 Threat Model

In Loco-Store, the threat model is based on a trusted proxy
architecture. As shown in Fig. 1, the trusted proxy is acted as
a middle layer between clients and the cloud service pro-
vider (CSP). The proxy coordinates all user accesses into the
oblivious accesses. The data is encrypted before uploading it
to the cloud storage. We assume that the cloud storage pro-
vider is honest-but-curious, and the trusted proxy server has
a reasonably large memory. The communications between
the trusted proxy and users are protected by end-to-end
encryption. In real life, the proxy model is widely used. For
example, the company and university can match this threat
model. All the staffs and students connect to the Internet
through the proxy (organization gateway). This threat model
is widely used in many research works. And we take the
same threat model as well [8], [9].

Under this threat model, there are two potential vulner-
abilities. The first one is that an attacker can compromise
with the cloud service provider. Second, an attacker can
also initiate the man-in-the-middle attack and monitor the
cloud server for client access patterns. It is noted that there
is another threat that information leakage through timing

channel [28]. Like other research work, we only consider the
first two attacks. We will leave the third one as our future
work.

3.2 Path ORAM

In ORAM, to prevent the private information leakage from
access patterns, each access should be transformed into
oblivious access. Thus, from the view of attackers or the
cloud server, the oblivious access is computationally indis-
tinguishable with a random sequence of bit strings. Path
ORAM is one of the most popular ORAM implementations.

In Path ORAM [3], a complete binary tree maintains the
data blocks with the root at level 0 and leaves at level L. Each
node in the tree is a bucket of size Z. There are at most Z real
data blocks in each bucket, while all the others are dummy
blocks. Each block is encrypted by probabilistic encryption
[29]. Each leaf node has a leaf ID, and its values vary from 0
to 2L�1. And, there is a position map in Path ORAM. It is a
lookup table that records the association between each data
block and a leaf ID if this data block is on the path. The blocks
in the intermediate node are on multiple paths. The system
randomly chooses one leaf ID from the paths.

For each oblivious access, the client locates the target
block’s leaf ID. Then, according to the ID, all the blocks on
the path are fetched. Only the real data blocks are decrypted
and stored in the stash. The stash is a small memory buffer
on the client side. Meanwhile, the client will randomly
assign a new leaf ID for the target block and update the local
position map. At the end of each oblivious access, several
blocks in the stash will be selected and written back to the
original path. The blocks to be selected must have an inter-
section with the path of the original leaf ID. Finally, these
blocks are re-encrypted and written back to the original
path. The details can be found in [3].

3.3 The Limitations of ORAM Technology

To prevent the user’s privacy leakage from access patterns,
each access in ORAM includes a read and a write operation.
Requesting a block is transformed into the operation of fetch-
ing multiple blocks. Thus, the adversary cannot figure out
which block is the target block and whether the user’s opera-
tion is a read or a write. For example, each oblivious access in
the Path ORAMmust fetch and put 60 blocks when the block
number in a bucket equals four, and the level of ORAM tree
is 15. As shown in Fig. 2, blocks 1 to 6 are randomly orga-
nized in an ORAM tree. We use the same color for relevant
blocks. When a client initiates a series of successive block
requests from block 1 to 6, Path ORAM induces six oblivious
accesses. Furthermore, in each oblivious access, the fetched
blocks are randomly written back to the ORAM tree. The
stash is usually empty after access, as proved in [3]. Path
ORAMdoes not consider temporal and spatial locality. Rele-
vant blocks can hardly be grouped together.

When applying the ORAM technology to cloud storage,
the situation becomes even worse. In the multi-user sce-
nario, a client does not know requests from other clients,
and the server has little knowledge about the client’s access
pattern as well. The outsourced data is logically organized
as a binary tree or forest. Thus, a single client or the server
can hardly detect the frequently accessed blocks across

Fig. 1. Deployment model of loco-store.

TIAN ET AL.: LOCO-STORE: LOCALITY-BASED OBLIVIOUS DATA STORAGE 1397

multiple users. The system cannot utilize existing locality
among users. To combining the locality with obliviousness,
Yu et al.[15] is the first to propose a dynamic prefetcher for
ORAM by introducing a superblock design. The blocks
exhibit spatial locality are merged into a superblock. It is a
big step in exploring how to utilize locality to improve
ORAM performance. However, It still exists some disadvan-
tages. First, It is designed at the cache-level for a single user
scenario. Only the data blocks adjacent in a program address
space are grouped as a superblock. Thus, it can hardly be
applied in the Oblivious Data Storage. Second, It ignores the
effect of the temporal locality on data accesses, especially in
amulti-user scenario.

As the state-of-the-art Oblivious Data Storage, TaoStore
[9] introduces asynchronous technology to reduce access
latency. It allows multiple clients to securely and obliviously
access their shared data on an untrusted storage server.
Moreover, it guarantees both the contents of the shared data
and the accesses frommultiple users are kept hidden against
any middle attacker observing traffic to and from the server.
However, it barely retains relevant blocks and wastes a lot of
network bandwidth for unrelated block transmissions. In the
worst case, all relevant blocks are distributed into different
paths. In this case, the number of oblivious accesses almost
equals the number of data access requests received by the
server. Undoubtedly, in Oblivious Data Storage, lots of block
transmissions are unnecessary. It seriously downgrades the
system performance.

4 DESIGN OF LOCO-STORE

In this section, we first describe the overview design of
Loco-Store. Then, we present a novel stash controller.
Finally, a locality-based eviction scheme is elaborated.

4.1 Overview

Themain goal of the Loco-Store is to avoid unnecessary obliv-
ious access by integrating the features of the locality and
obliviousness in a multi-user environment. Thus, each data
request in Loco-Store is converted by the trusted proxy into
oblivious access. And the cloud service provider responds to
the proxy with a target block and some relevant blocks. Then,
the target block is returned to the client. Moreover, Loco-Store

utilizes Loco-ORAM, a locality-based ORAM scheme to inte-
grate the locality and obliviousness by introducing threemod-
ules: the interactive module, the stash controller, and the
locality-based evictionmodule.

The interactive module has two functions. The first one is
to fetch and decrypt all blocks of a path. Then, these blocks
are put into the stash on the trusted proxy. The second one
is responsible for encrypting data blocks. Then, these blocks
are written back to the original path on the cloud server.
The stash controller module is accountable to group multi-
ple relevant blocks as a superblock based on temporal and
spatial locality. Then, the locality-based eviction module
randomly selects blocks to keep the obliviousness feature.
Unlike traditional ORAM techniques, the selection in the
locality-based eviction module is based on the superblock
level. It is noted that Blocks within a superblock do not
have to be stored in the same bucket, as shown in Fig. 3.
Specifically, the subsequent request from block 1 to 6 in
Loco-Store only needs one oblivious access. Moreover, Each
bucket has extra space to store the metadata information,
including the superblock hash values. Here, we keep the
superblock hash value for each block in the metadata of this
bucket. For each superblock, we calculate its hash value
based on its data block contents.

Next, Algorithm 1 detailedly shows the oblivious access
function in Loco-ORAM, which integrates the locality and
obliviousness features by scheduling the above three mod-
ules. We denote it as the ”Access” function. There are three
parameters in this function such as ’op’, ’a’, and ’data�’. ’op’
denotes the operation which is read or write. ’a’ denotes the
logical address of the target block. ’data�’ denotes the con-
tent of the writing block. To simplify the description, the
symbols used in Loco-ORAM are listed in Table 1. The
oblivious access function is briefly summarized in steps:

1) Hit block (Lines 1 to 7): For each oblivious access,
Loco-ORAM first detects whether the requested
block locates in the stash S or not. Once there is a hit,
it can dynamically group and manage the blocks of
the stash by calling stash_Control function. The
details of stash controller is in next Section 4.2. Then,
the target block can be returned to the client.

Fig. 2. Blocks 1 to 6 are randomly stored in ORAM tree and a request
sequence accesses these blocks in order.

Fig. 3. The superblock structure.

1398 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 19, NO. 2, MARCH/APRIL 2022

2) Read path (Lines 9 to 11): Once the target block is not
hit in the stash S, Loco-ORAM can achieve its leaf ID
from position. If the ID equals to null, Loco-ORAM
will randomly generate a leaf ID. Meanwhile, all real
blocks in a path from leaf ID to the root are fetched
into the Stash S by the readPath function of the inter-
active module. Since the trusted proxy has a reason-
able memory in the threat model, it stores the
position map locally.

3) Update block (Lines 12 to 15): When the operation
equals to a ’write’, the target block in the stash is
updated based on the new content data*. Then,
whether “op” is a read or a write operation, the
stash controller module is triggered by calling the
Stash_Control function. It screens out the blocks
that do not reference again in the near future, and
dynamically group relevant blocks together.

4) Write path (Lines 16 to 20): To write back the rarely
accessed blocks and keep the provable security, the
locality-based eviction module is triggered by calling
the locality_Eviction function. It is responsible for
deciding howmany blocks could be written back and
construct awritten back path. If the real block number
of the path does not reach the maximum block num-
ber of the path, it will be padded by dummy blocks.
Then, those evicted blocks are removed from S. The
constructed path will be encrypted by the probabilis-
tic encryption [29] and written back by the writePath
function of the interactivemodule.

Subroutines. The readPath function is used to fetch the
blocks from the cloud to the trusted proxy. Meanwhile, the
writePath function writes back the blocks to the cloud. Both
readPath and writePath functions contain the encryption
and decryption process. Here, these cryptography schemes
in Loco-ORAM are the probabilistic encryption [29] like
Path ORAM.

4.2 Stash Controller

The stash controller introduces three queues, temporal
queue, spatial queue, and removed queue to dynamically
group the relevant blocks in the stash based on temporal
and spatial properties. The overview of the stash controller
is shown in Fig. 4. For each oblivious access, the target block
is pushed into the temporal queue. The temporal queue
maintains frequently accessed blocks by dynamically block
replacement. Only the block, which may be re-accessed in
the future, is held in the temporal queue. Here, The replace-
ment algorithm can be realized by any cache replacement

algorithm, such as Least recently used policy (LRU) [30] or
Least Frequently Used policy (LFU) [31]. Besides, the spatial
locality is maintained by the spatial queue. To further opti-
mize the locality management, we add a removed queue to
hold more blocks that might be accessed in the future.

Algorithm 1. Access(op,a,data*)

1: data Read block a from S
2: if data 6¼ null then
3: if op=write then
4: data data�

5: end if
6: stash_Control()
7: returndata
8: else
9: x position[a] 6¼null ? position[a] : random leaf ID
10: S readPath(P ðxÞ)
11: data read target block a from stash
12: if op=write then
13: S (S-{(a,data)})[{(a,data*)}
14: end if
15: stash_Control()
16: P(x) locality_Eviction()
17: S0 Select blocks from P ðxÞ
18: S S � S0

19: writePath(P ðxÞ)
20: end if

Specifically, both the spatial and the removed queue are
based on superblock to manage the input and output of
queues. Each block in the temporal queue has a correspond-
ing superblock. All the superblocks are kept in the spatial
queue. Moreover, the rarely accessed superblock is removed
from the spatial queue to the removed queue. For example,
once a target block is accessed, the target block is pushed
into the temporal queue. Meanwhile, the corresponding
superblock is pushed into the spatial queue if it is not in the
queue before. It is noted that whole blocks in the stash are
stored at the buffer. Furthermore, each queue only maintains
the reference of the block or superblock. The superblocks of
these queues are dynamically merged and split based on the
accessed frequency and relevance. Concretely, each super-
block reference in the spatial queue records time to use
(TTU) and its blocks’ hit counts. If a new superblock is

TABLE 1
Notations

Notation Description

N Total blocks outsourced to server
L Height of Loco-ORAM binary tree
Z The number of Maximum blocks in each Bucket
P ðxÞ Path from leaf ID x to the root
P ðx; lÞ The bucket at level l along the path P ðxÞ
S The stash in Loco-ORAM(located at the trusted proxy)
position Loco-ORAM’s position map
dummy block Randomly generated block
remove size A threshold in locality-based eviction module

Fig. 4. The overview of the stash controller.

TIAN ET AL.: LOCO-STORE: LOCALITY-BASED OBLIVIOUS DATA STORAGE 1399

pushed into the spatial queue, all superblock records in the
spatial queue are scanned for merging and splitting. Only
the superblock, which TTU is larger than a predefined value,
d, can be chosen as a candidate for merging or splitting. The
split superblock from the spatial queue will be pushed into
the removed queue. Once a block in the superblock is re-
accessed, it can re-push into the spatial queue. Next, we
detailed introduce the merge and split process in the spatial
queue.

To support the merge process, the stash controller moni-
tors the request sequences in the trusted proxy. If there exist
cross-accesses between two different superblocks, it records
these events for a period time d. Thus, according to these
records, the stash controller merges the relevant two super-
blocks into a new superblock. For example, during a period
of time d, once a block i in a superblock k is accessed after
the access of block j in other superblock m, the superblock j
and m can be merged as a new superblock. It is noted that
we defined that the size of each superblock does not exceed
the ðL � ZÞ=4, which is based on our experience. If the size
of the new superblock after the merging process is larger
than the maximum superblock size, the stash controller can
directly terminate the merge operation.

CVi ¼ si

mi

: (1)

In the split process, the stash controller calculates the coef-
ficient of variance (CV) for superblocks larger than d in TTU .
In probability theory and statistics, the coefficient of variance
is a standardizedmeasure of a frequency distribution disper-
sion. Here we use the coefficient of variance to select which
superblock could be split. In other words, the high value of
CV shows that some blocks in a superblock are accessed fre-
quency and vice versa. Specifically, We denote that the block
number in a superblock isN . The access probability for each
block in this superblock is 1

N. We can calculate the average
access number and variance of blocks in the superblock i
based on the stash controller’s monitor, denoted asmi and si.
It is noted that the average access numbermeans the average
number of block accesses in a superblock. Thus, the CVi of
the superblock i can be achieved based on the Formula 1.
Meanwhile, the stash controller calculates the average access
number (AHN) of superblocks. Then, it filters out the super-
blocks with CV larger than a predefined threshold T and
denoted these superblocks as a set G. If the mi of the super-
block i in the set G is less than the three-quarter AHN , it is
split into two superblocks. Blocks in the superblock i with
the accessed number not less than mi are grouped as a new
superblock. Finally, the superblock i is pushed into the
removed queue from the spatial queue. Furthermore, once a
block hit in a superblock of the removed queue, it gets put
back on the spatial queue from the removed queue.

4.3 Locality-Based Eviction

The locality-based eviction module mainly consists of two
subtasks to securely group relevant blocks into a written-back
path. The first one is the leaf ID assignment. The second one is
the relevant block selection for eviction. The former is the key
to keeping the access pattern in Loco-Store computationally
indistinguishable with a random sequence of bit strings in the

cloud or attackers’ view. The latter one is to write the relevant
blocks on the same path. The detailed pseudocode of
Locality Eviction function is shown asAlgorithm 2.

First, the Locality Eviction function generates an empty
path, P ðxÞ, by padding dummy blocks (line 1). If the length of
the removed queue is less than a predefined threshold,
remove size, the Locality Eviction function directly returns
P ðxÞ(lines 2-3). If not, the function calculates how many real
blocks could be written back by randomly generated leaf ID
(from lines 5-19). When the leaf ID of P ðxÞ belongs to
½0; 2L�2Þ, the generated leaf ID scope is ½0; 2L�2Þ. When leaf
ID of P ðxÞ belongs to ½2L�2; 2L�1Þ, the generated leaf ID scope
is ½2L�2; 2L�1Þ. Then, if there are intersections between P ðxÞ
and the path corresponding to randomly generated leaf ID,
the intersection nearest to the leaf node could be recorded as
the location where the data block can be written. Finally, the
Locality Eviction function can selectK superblocks from the
removed queue and write them to previous recording loca-
tions of P ðxÞ in sequence (from lines 20-26).

Algorithm 2. Locality_Eviction()

1: construct a path P ðxÞ by padding dummy blocks
2: if the length of Removed Queue is less than remove size

then
3: return the path P ðxÞ
4: else
5: Count the Removed Queue length � remove size
6: if 0 <¼ x < 2L�2 then
7: randomly generate L � Z leaf ID in [0; 2L�2) and store at

the array R
8: else
9: randomly generate L � Z leaf ID in [2L�2; 2L�1) and store

at the array R
10: end if
11: evict_count 0
12: for l 2 {L;L-1,� � �,0} do
13: for i20,1,2,� � � ; Z-1 do
14: if P ðx; lÞ==P (R[l � Z+i],l) then
15: evict_count++
16: record the writing location of the path P ðxÞ
17: end if
18: end for
19: end for
20: if the block number of topK superblocks in Removed

Queue < evict_count then
21: popK superblocks from Removed Queue wherePK

i¼1 superblock sizei < evict_count

22: write blocks ofK superblocks sequentially into the
recorded writing location of P ðxÞ

23: update the positionmap
24: end if
25: return the path P ðxÞ
26: end if

Note that Loco-ORAM is easily amenable to partitioning
that ORAM tree in a distributed fashion across multi parti-
tions as in the previous [9] and [3] . The only difference is
the data-fetch logic. Moreover, all the blocks will be re-
encrypted based on probabilistic encryption by the interac-
tive module. The cloud server can not know information
about: 1) which data is being accessed; 2) how old it is; 3)

1400 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 19, NO. 2, MARCH/APRIL 2022

whether the same data is being accessed; 4) access pattern
(sequential, random, etc); 5) whether the access is a read or
a write. 6) what is the relevance among the blocks of a path.
The detailed security proof of the Loco-ORAM is detailed in
Section 5.

5 SECURITY PROOF

In this section, we detailedly prove that Loco-ORAM keeps
the security definition of ORAM technology. We first take
Path ORAM as an essential representative ORAM to give out
a security definition of ORAM technology. Then, to simplify
the proven process, we formulate the security definition in
Path ORAMand Loco-ORAM. Finally, we discuss the

For any access in Path ORAM, it satisfies the following
definition. Let ~y :¼ ððopM; aM; dataMÞ; . . . ; ðop1; a1; data1ÞÞ
denotes a data request sequence of length M, where each
opi denotes a read(ai) or a write(ai,data) operation. Specifi-
cally, ai denotes the identifier of the block being read or
written, and datai denotes the data being written. In our
notation, index 1 corresponds to the most recent load/store,
and index M corresponds to the oldest load/store opera-
tion. Let A(~y) denotes the access sequence from the cloud’s
or attacker’s perspective.

Definition 1 (Security Definition). An ORAM construction
is said to be secure if (1) for any two data request sequences ~y
and ~z of the same length, their access patterns A(y) and A(z)
are computationally indistinguishable by anyone but the client,
and (2) the ORAM construction is correct in that it returns on
input ~y data that is consistent with ~y with probability
� 1� neglðk~ykÞ.
In other words, the cloud cannot acquire the following

information based on the client’s access pattern: a) which
data is being accessed;b) how old it is (when it was last
accessed); c) whether the same data is being accessed(link-
ability); d) user’s truly access pattern (sequential, random,
etc.); e) whether the access is a read or a write operation.
Then, we formalize the distributed probability of A(~y) in
Path ORAM and Loco-ORAM. In Path ORAM, the scope of
each block’s new leaf ID in stash is ð0; 2L�1Þ. Moreover, each
evicted block is independent of others. Thus, we can get the
formalization by using Bayes rule as follow:

ProbðAð~yÞÞ ¼
YM
i¼1

ProbðpositionðaiÞÞ ¼ ð2L�1Þ�M: (2)

Then, we use the similar idea to formalize Prob0ðAð~yÞÞ in
Loco-ORAM. Based on the locality-based eviction scheme in
Loco-ORAM, each eviction block’s leaf ID is located at
½0; 2L�2Þ or ð2L�2; 2L�1�. Thus, Prob0ðpositionðaiÞÞ is equals to
ð2L�2Þ�1 by using Bayes rule. Then, we can also get the prob-
ability ofAð~yÞ in Loco-Store as Formula 3 since each leaf ID’s
generation of ai is independence. We denote the probability
ofAð~yÞ in Loco-Store as Prob0ðAð~yÞÞ.

Prob0ðAð~yÞÞ ¼
YM
i¼1

Prob0ðpositionðaiÞÞ ¼ ð2L�2Þ�M: (3)

To further prove that the access patterns in Loco-ORAM
and Path ORAM are computational distinguishable, we

give out the definition of computational distinguishability.
In computational complexity, let Xn, Yn be sequences of
distributions with Xn; Yn ranging from 0; 1lðnÞ for some
lðnÞ ¼ nOð1Þ. Xn and Yn are computationally indistinguish-
able if for every non-uniform probabilistic polynomial-time
algorithm A and following quantity is a negligible function
in n:

dðnÞ ¼ Pr
x Dn

½AðxÞ ¼ 1� � Pr
x En

½AðxÞ ¼ 1�
����

����: (4)

It is noted that the negligible function is a function d:
N R such that for every positive integer c there exists
an integer Nc such that jdðxÞj < 1

xc for all x > Nc. There-
fore, by computing the absolute value of the difference
between Prob0ðAð~yÞÞ and ProbðAð~yÞÞ, we can get the equation
as follow:

dðMÞ ¼ ð2L�2Þ�M 1� 1

2M

� �
: (5)

Therefore, we can prove that dðMÞ is a negligible function
based on the computational indistinguishable definition.
Since M is no less than 1, dðMÞ < ð2L�2Þ�M . Then, we can let
a ¼ 2L�2 and dðMÞ ¼ a�M . To find out the Nc which make
dðMÞ is a negligible function. we assume that dðMÞ < M�c

where c can be any positive real integer. By taking natural
logarithms, dðMÞ < M�c may bewritten as:

M

lnM
>

c

ln a
:

Since the Taylor expansion of the exponential function [32]
shows that ey > 1þ yþ 1

2 y
2 for all y > 0. Thus, we can get

the formulation that ey=y > 1=yþ 1þ 1
2 y, which implies

ey=y > 1
2 y. Then, by replacing lnM with y, we can get the

inequality as follow:

M

lnM
>

lnM

2
ðM > 1Þ:

Obviously, when Nc is no less than exp 2c
lna, dðMÞ satisfies

the negligible function definition. Consequently, we prove
that the access patterns in Loco-ORAM is computationally
indistinguishable compared with Path ORAM.Moreover, the
A(~y) in our design is still computationally indistinguishable
from a random sequence of bit strings. It is because the A(~y) in
Path ORAM is computationally indistinguishable with a ran-
dom sequence of bit strings. Thus, based on the transitivity/
triangle inequality property in computational indistinguish-
ability theory [33], the A(~y) in our design is also computation-
ally indistinguishable compared with a random sequence of
bit strings. Therefore, the security of the Loco-Store can keep
the same security definition ofORAM technology.

Stash Size. Although the Loco-Store holds the relevant
blocks in the stash, the location-based eviction is still a
greedy process for the irrelevant blocks from the stash to
the server storage similar to the Path ORAM. Thus, we can
calculate the upper bound of the stash size from two parts.
The first part is for the usage size about relevant blocks,
while the other is the usage of the irrelevant blocks. In the
worst case, the three queues are filled with relevant blocks.

TIAN ET AL.: LOCO-STORE: LOCALITY-BASED OBLIVIOUS DATA STORAGE 1401

Then, the upper bound about this part is OððSr þ SsÞ � L�Z
4 Þ

where the Sr denotes the maximum length of the removed
queue, the Ss denotes the maximum length of the spatial
queue. since Sr 	 N and Ss 	 N . the OððSr þ SsÞ � L�Z

4 Þ can
be reduced to OðlogNÞ.

The upper bound about the second part is similar to the
Path ORAM [3]. It is because the locality-based eviction in
Loco-Store divides the ORAM tree as two subtrees. Each
access on the subtrees is the same as the access in a Path
ORAM. Although the relevant block is held in the stash, the
usage for the irrelevant part is greedily evicted from stash
to server storage. Thus, we can denote the upper bound of
the second part is OððlogNÞhðNÞ by any function of
hðNÞ ¼ vð1Þ. What’s more, the replacement policy in the
stash controller and the locality-based eviction scheme
makes the irrelevant blocks are greedily evicted to the
server storage similar to the Path ORAM. Thus, it can
hardly induce stash overflow. It is noted that the superblock
size does not affect the computational indistinguishability
property in Loco-Store since the blocks in a superblock are
randomly distributed in a path.

Correctness. To achieve the data correctness, the Loco-
Store utilize the write-back policy. In other words, for each
data modification operation, the updated block is written in
the stash and hold by the stash controller. Only when the
block is evicted, the modified data can be written to back-
end storage. What’s more, the access algorithm can ensure
that each access is to read data from the stash. The user only
accesses the remote storage if the target data cannot be
found in the stash. Thus, this ensures that each access data
is the latest data, no dirty data. Moreover, whole blocks in
the stash are stored at the buffer, and the three queues main-
tain the temporal and spatial locality based on the reference.
Thus, the data can be consistent in the three queues simulta-
neously. The disadvantage of this policy is that the stash’s
data may lose once the system power down. However, since
the proxy in our threat model, such as the organization gate-
way, is almost non-outage, we can practically ignore this
disadvantage.

6 EXPERIMENTS

6.1 Methodology

To evaluate the Loco-Store, we analyze experimental results
from two main metrics, including the overall network band-
width cost and the overall access time consumption. In
Oblivious Storage, the overall access time consumption
includes the time cost of the read and write operations to
remote cloud storage. And each target block access causes a
read and write operations for the same block number. Thus,
we do not divide the overall access time into two parts:
read and write. Both the servers and the trusted proxy are

equipped with an Intel(R) Core(TM) i7-4790 @3.60 GHz 8
core CPU, 16 GB RAM, a 500 GB 5400 rpm hard disk and is
connected to a 100 Mbps network. The installed OS is
Ubuntu 16.10 LTS 64-bit System. We use another machine
with the same configuration to feed the requests from cli-
ents. These high-performance servers are formed as a clus-
ter to simulate the real cloud storage scenario.

There are four baseline designs for comparisons. The first
one is the oblivious storage by directly utilizing the Path
ORAM [3] technology between the trusted proxy and the
cloud server called Path-Store. The second and third is the
oblivious storage by integrating the Ring ORAM [11] and
PrORAM [15] which is called Ring-Store and Pr-Store, respec-
tively. Another is the state-of-the-art oblivious storage, TaoS-
tore [9], which is also based on the trusted proxy model. We
conduct the experiments on four traces. All of these traces,
which are shown as Table 2, belong to real-world trace.
Instructional Workload(INS) comes from a collection from a
group consisting of 20 machines located in labs for under-
graduate classes, which shows a robust temporal locality.
Web-Image [10], [34], [35] came from a collection of the web-
server which maintains a database of images and shows a
strong spatial locality. This server received approximately
2,300 accesses per day. The Trace of FIU-Homes and FIU-Mail
[36] are from two different applications, namely research
group activities, andmail servers in FIU, respectively.

6.2 Numerical Results and Discussions

First, to explore the relationship between bandwidth cost
and the maximum real block number in a bucket, Z, we con-
duct the experiment on Path-Store, TaoStore, Ring-Store, Pr-
Store, and Loco-Store under different Z value. Moreover,
previous work [13] showed that Z=3 provides the best per-
formance in ORAM technology. Thus, Fig. 5 shows the
result by sweeping the Z value from 3 to 4 while the other
experimental parameters are fixed. Correctly, the stash size
is fixed as 6 MB, where the maximum block number in the
temporal queue is 128, and the maximum superblock num-
ber in the removed queue is 64. Moreover, the maximum
superblock number of the spatial queue in Loco-ORAM is
no more than the maximum block number in the temporal
queue. To facilitate the description, the M ZX in the figure
means that M is the comparison method such as Path-Store,
TaoStore, Ring-Store, Pr-Store, or Loco-Store, and X denotes
the value of Z.

As shown in Fig. 5, the overall network bandwidth cost
of all methods is swelling as the increase of the Z values
under various workloads. Specifically, when Z equals 4 in
FIU-Homes workload, the bandwidth cost of Loco-Store is
25.1 percent more than the bandwidth cost of Loco-Store in
Z=3. Furthermore, there are similar trends in various traces.
It is because both Loco-Store and the other baselines achieve

TABLE 2
Traces

Name Read:Write Ratio Read Number Write Number Real Block Number

INS 6.31 35642 5646 18639
WEB-Image 11.62 33664 2897 31298
FIU-Mail 0.00002 3896 41525 29716
FIU-Homes 0.27 11448 42134 23657

1402 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 19, NO. 2, MARCH/APRIL 2022

the oblivious purpose by fetching additional blocks in each
access. Once stored real blocks in a bucket are less than Z,
dummy blocks can pad the bucket’s rest space. Thus, each
access induces a higher overall network bandwidth cost for
the larger Z.

Fig. 5 shows that the overall network bandwidth cost in
the Loco-Store is far less than the other baselines under the
traces with a robust locality. For example, although the
overall network bandwidth of TaoStore in FIU-Homes is
1.65 GB less than Path-Store when Z equals 3, Loco-Store
can save 18.32 percent of the overall network bandwidth
based on the TaoStore. Moreover, the Loco-Store can save
14.76 and 6.32 percent of the overall network bandwidth
based on the Ring-Store and Pr-Store, respectively. Mean-
while, Loco-Store can save 22.24 percent of the overall net-
work bandwidth based on the Path-Store. Besides, we also
observer the overall time cost under different Z values.
Fig. 6 list out the corresponding overall time cost to Fig. 5
and the overall time cost of Loco-Store is less than other
methods except for FIU-Mail. Namely, the total time for
Loco-Store in FIU-Homes is 26.17, 13, and 21.58 percent less
than the TaoStore’s, Pr-Store’s, and Ring-Store’s total time
when Z equals to 4, respectively. It is because there exists a
robust temporal or spatial locality in these traces, and Loco-
Store can avoid unnecessary oblivious access by maintain-
ing the temporal and spatial locality in the stash controller.
Nevertheless, the merge and break process in Pr-Store is not
suitable for the temporal locality. Therefore, Loco-Store can
have less bandwidth cost and execution time under the
trace, which has a robust temporal locality.

Moreover, only 3 percent of the overall network band-
width is saved compared with TaoStore under the FIU-Mail
trace in Fig. 5. In this trace, the Ring-Store can save more
bandwidth compared with Loco-Store. It is because that too
many new writing operations lead to the FIU-Mail trace has
a weak locality compared with the FIU-Homes trace. Too
many new writing operations, existing in FIU-Mail trace,
can hardly give full play to the advantage of the locality
property. Besides, since Web-Image trace shows a strong
spatial locality and INS trace shows a robust temporal local-
ity, the Loco-Store can avoid more oblivious access by the
block hits. It is noted that the overall network bandwidth
cost between Loco-Store and Pr-Store is similar in Web-
Image trace. Since the Web-Image trace only shows a strong

spatial locality. Thus, the benefits of Loco-Store from the
temporal locality in Web-Image trace becomes little.

To further explore influence by different parameters set-
ting, we also conduct the experiments under four real traces
by changing the maximum length of the temporal queue.
As we discussed in Section 5, the stash size in Loco-Store is
related to the maximum length of the temporal queue and
removed queue. However, there is no queue setting in TaoS-
tore, Path-Store, Ring-Store, and Pr-Store. Nevertheless,
when we fixed other parameter settings in Loco-Store, each
maximum length setting of the temporal queue corresponds
to a stash size. For example, when Z equals to 4, and each
block is 8 KB, the stash size of Loco-Store is from 2 MB to
16 MB according to the maximum length of the temporal
queue from 32 to 128. Thus, as shown in Fig. 7, we compare
the experimental results under various stash size. It shows
that the overall network bandwidth cost in Path-Store,
TaoStore, Ring-Store is almost unchanged as the increase of
Stash Size. Pr-Store only indicates a similar trend with
Loco-Store under the trace with a strong spatial locality
such as WEB-Image. Moreover, Loco-Store shows a better
performance in the traces which has robust temporal or spa-
tial locality.

Specifically, the overall network bandwidth cost of Loco-
Store is less than other baselines, especially in the FIU-
Homes, INS, and WEB-Image traces. For example, as shown
in Fig. 7a, the overall network bandwidth cost of TaoStore is
39.19 percent more than the overall network bandwidth
cost of Loco-Store when the stash size is 512*8KB. Moreover,
the network bandwidth decreased by Loco-Store is more
than that by TaoStore and Path-Store as the increasing of
stash size. The main reason is that the Path-Store and the
TaoStore induce much more remote accesses than the Loco-
Store. As we known, each oblivious accesses from server
storage causes lots of useless block transmissions in Path-
Store and TaoStore. The Loco-Store can decrease the oblivi-
ous accesses number by embedding the relevant blocks into
each oblivious access.

As shown in Fig. 7, the network bandwidth of the Path-
Store, TaoStore, and Ring-Store are constant with the
increasing of the stash size. It is because the purpose of
these methods is to keep the stash occupancy low. The
change of stash size has little effect on network bandwidth
cost. On the contrary, both Loco-Store and Pr-Store attempt

Fig. 5. The overall network bandwidth cost under various Z values. Fig. 6. The overall time cost under various Z values.

TIAN ET AL.: LOCO-STORE: LOCALITY-BASED OBLIVIOUS DATA STORAGE 1403

to hold some related blocks to avoid unnecessary oblivious
access. Thus, the overall network bandwidth cost of our
method and Pr-Store changed under various traces with a
robust locality. However, although the performance of the
Loco-Store still outperforms other baselines, the saving
bandwidth cost of the Loco-Store becomes less as the stash
size increases in the FIU-Mail trace. It is because the FIU-
Mail trace shows weak locality because of too many write
new block operations. Thus, the Ring-Store can save more
bandwidth than Loco-Store under the trace with a weak
locality such as FIU-Mail. And the Loco-Store can obtain
higher benefits under trace with a robust locality.

Besides the maximum length of the temporal queue, we
also explore the effect of the parameters in other queues.
Since the remove queue and spatial queue in the stash con-
troller of Loco-Store are used to hold relevant blocks with the
temporal queue, the experimental effect of changing the
maximum length of remove queue or spatial queue is similar
to the results under various temporal queue. Thus, we do
not repeatedly list the results by changing the maximum
length of the spatial queue or removed queue. However, the
parameter remove size in the locality-based eviction process
of the Loco-Store can also impact the performance. There-
fore, we calculate the saving network bandwidth by chang-
ing the remove size under various workloads. First, we
initial overall network bandwidth cost when the remove size
is set as zero. Then, we also count the saving bandwidth cost

by comparedwith the initial overall network bandwidth cost
by changing the remove size from 64 to 256. Fig. 8 shows the
experimental results under various traces. As the increase of
the remove size, the saving network bandwidth cost in Loco-
Store is also augmented. It is because the remove queue not
only works as a buffer to support the writing the superblock
based on spatial locality but also reduce the remote oblivious
access number by increasing the block hit in the stash. Specif-
ically, the locality-based eviction scheme can only evict the

Fig. 7. The overall network bandwidth under different stash size.

Fig. 8. The saving network bandwidth of the loco-store under various
remove size (*8KB).

1404 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 19, NO. 2, MARCH/APRIL 2022

real blocks into the cloud once the superblock number of the
remove queue exceeds the remove size setting.

7 CONCLUSION

In this paper, we analyze ORAM technology and present its
limitations in Oblivious Data Storage. Traditional ORAM
technology can hardly align successive blocks together and
retain hot blocks for future accesses. Then, inspired by the
successful adoption of utilizing locality in storage domains,
we propose a novel locality-based Oblivious Data Storage,
Loco-Store, to integrate the features of locality and oblivi-
ousness in the cloud scenario. In Loco-Store, a novel stash
controller taking advantage of both temporal and spatial
locality is designed, and a locality sensitive eviction scheme
is also proposed to keep the provable security compared
with ORAM. Finally, Based on theoretical proof and the con-
ducted experimental results, Loco-Store outperforms the
state-of-the-art Oblivious Data Storage solution, TaoStore. It
can save the network bandwidth up to 39.19 percent, and
reduce the overall access time by 26.17 percent.

In the future, we try to further evaluate the Loco-Store by
deploying onto Google Drive or Amazon EC2 and exploring
the theoretical setting method of the superblock size in Loco-
Store. Furthermore, the situation becomes more complex
and practical when considering access control and concur-
rency problems in cloud storage. Thus, we attempt to further
add these two features based on Loco-Store and defense the
information leakage through timing channels such as when
or how frequently the client makes data requests. Although
many researchers are dedicated to improving ORAM tech-
nology’s performance, it can hardly have the same perfor-
mance as the non-secure system, not even Loco-Store.
Hence, wewill rethink the oblivious technology.

ACKNOWLEDGMENTS

This work was supported by the National Key Research
and Development Program of China under Grants
2016YFB0800402 and 2016QY01W0202, National Natural Sci-
ence Foundation of China under Grants U1836204, U1936108,
61572221, 61433006, and U1401258, Teaching Reform Founda-
tion under Grant 192JXJ129, South of China University
research foundation under Grant 190XQD121, Hunan Prov-
ince research foundation under Grant 19C1624, and theMinis-
try of Education Humanities and Foundation on Humanities
and Social Sciences under Grant 20YJC880027. This work is
also supported in part by the National Science Foundation
under Grant CNS 1526190.

REFERENCES

[1] M. S. Islam, M. Kuzu, and M. Kantarcioglu, “Access pattern dis-
closure on searchable encryption: Ramification, attack and miti-
gation,” in Proc. 19th Annu. Netw. Distrib. Syst. Secur. Symp., 2012,
pp. 237–252.

[2] O. Goldreich, “Towards a theory of software protection and simu-
lation by oblivious rams,” in Proc. 19th Annu. ACM Symp. Theory
Comput., 1987, pp. 182–194.

[3] E. Stefanov et al., “Path ORAM: An extremely simple oblivious
RAM protocol,” in Proc. ACM SIGSAC Conf. Comput. Commun.
Secur., 2013, pp. 299–310.

[4] R. Wang, Y. Zhang, and J. Yang, “D-ORAM: Path-oram delegation
for low execution interference on cloud servers with untrusted
memory,” in Proc. IEEE Int. Symp. High Perform. Comput. Architect.,
2018, pp. 416–427.

[5] A. Shafiee, R. Balasubramonian, M. Tiwari, and F. Li, “Secure
DIMM: Moving ORAM primitives closer to memory,” in Proc. IEEE
Int. Symp. High Perform. Comput. Archit., 2018, pp. 428–440.

[6] X. Zhang et al., “Fork path: Improving efficiency of ORAM by
removing redundant memory accesses,” in Proc. 48th Int. Symp.
Microarchit., 2015, pp. 102–114.

[7] N. Fujieda, R. Yamauchi, H. Fujita, and S. Ichikawa, “A virtual
cache for overlapped memory accesses of path ORAM,” Int. J.
Netw. Comput., vol. 7, no. 2, pp. 106–123, 2017.

[8] E. Stefanov and E. Shi, “Oblivistore: High performance oblivious
cloud storage,” inProc. IEEE Symp. Security Privacy, 2013, pp. 253–267.

[9] C. Sahin, V. Zakhary, A. El Abbadi, H. Lin, and S. Tessaro,
“Taostore: Overcoming asynchronicity in oblivious data storage,”
in Proc. IEEE Symp. Security Privacy, 2016, pp. 198–217.

[10] J. Wang and Y. Hu, “WOLF - A novel reordering write buffer to
boost the performance of log-structured file systems,” in Proc.
Conf. File Storage Technol., 2002, pp. 47–60.

[11] L. Ren et al., “Ring ORAM: Closing the gap between small and
large client storage oblivious RAM,” IACR Cryptol. ePrint Archive,
vol. 2014, 2014, Art. no. 997.

[12] C. W. Fletcher, M. Naveed, L. Ren, E. Shi, and E. Stefanov, “Bucket
ORAM: Single online roundtrip, constant bandwidth oblivious
RAM,” IACRCryptol. ePrint Archive, vol. 2015, 2015, Art. no. 1065.

[13] L. Ren, X. Yu, C. W. Fletcher, M. van Dijk, and S. Devadas,
“Design space exploration and optimization of path oblivious
RAM in secure processors,” in Proc. 40th Annu. Int. Symp. Comput.
Archit., 2013, pp. 571–582.

[14] R. Wang, Y. Zhang, and J. Yang, “Cooperative path-oram for effec-
tive memory bandwidth sharing in server settings,” in Proc. IEEE
Int. Symp. High Perform. Comput. Archit., 2017, pp. 325–336.

[15] X. Yu et al., “Proram: Dynamic prefetcher for oblivious RAM,” in
Proc. 42nd Annu. Int. Symp. Comput. Archit., 2015, pp. 616–628.

[16] S. Devadas, M. vanDijk, C.W. Fletcher, L. Ren, E. Shi, andD.Wichs,
“Onion ORAM: A constant bandwidth blowup oblivious RAM,” in
Proc. 13th Int. Conf. Theory Cryptogr., 2016, pp. 145–174.

[17] T. Mayberry, E. Blass, and A. H. Chan, “Efficient private file
retrieval by combining ORAM and PIR,” in Proc. 21st Annu. Netw.
Distrib. Syst. Secur. Symp., 2014, pp. 778–789.

[18] D. Apon, J. Katz, E. Shi, and A. Thiruvengadam, “Verifiable obliv-
ious storage,” in Proc. 17th Int. Conf. Practice Theory Public-Key
Cryptogr., 2014, pp. 131–148.

[19] T. Moataz, T. Mayberry, and E. O. Blass, “Constant communica-
tion oramwith small blocksize,” in Proc. ACM Sigsac Conf. Comput.
Commun. Secur., 2015, pp. 862–873.

[20] J. Trostle and A. Parrish, “Efficient computationally private infor-
mation retrieval from anonymity or trapdoor groups,” in Proc. Int.
Conf. Inf. Secur., 2010, pp. 114–128.

[21] P. Paillier, “Public-key cryptosystems based on composite degree
residuosity classes,” in Proc. Int. Conf. Theory Appl. Cryptogr.
Techn., 1999, pp. 223–238.

[22] E. Shi, T. H. H. Chan, E. Stefanov, and M. Li, “Oblivious ram with
O((log N) 3) worst-case cost,” in Proc. Int. Conf. Theory Appl. Cryp-
tology Inf. Secur., 2011, pp. 197–214.

[23] J. Dautrich and C. V. Ravishankar, “Combining ORAM with PIR
to minimize bandwidth costs,” in Proc. 5th ACM Conf. Data Appl.
Secur. Privacy, 2015, pp. 289–296.

[24] E. Stefanov, E. Shi, and D. X. Song, “Towards practical oblivious
RAM,” in Proc. 19th Annu. Netw. Distrib. Syst. Secur, Symp., 2012,
pp. 210–229.

[25] T. Hoang, C. D. Ozkaptan, A. A. Yavuz, J. Guajardo, and T. Nguyen,
“S3ORAM: A computation-efficient and constant client bandwidth
blowup ORAM with shamir secret sharing,” in Proc. ACM SIGSAC
Conf. Comput. Commun. Secur., 2017, pp. 491–505.

[26] C. Nagarajan, A. Shafiee, R. Balasubramonian, and M. Tiwari, “r:
Relaxed hierarchical ORAM,” in Proc. 24th Int. Conf. Architect. Sup-
port Program. Languages Operating Syst., 2019, pp. 659–671.

[27] H. Cao, R. Li, W. Tian, Z. Xu, and W. Xiao, “Blockchain-based
accountability for multi-party oblivious RAM,” J. Parallel Distrib.
Comput., vol. 137, pp. 224–237, 2020.

[28] P. C. Kocher, “Timing attacks on implementations of diffie-hellman,
RSA, DSS, and other systems,” in Proc. 16th Annu. Int. Cryptology
Conf. Advances Cryptol., 1996, pp. 104–113.

TIAN ET AL.: LOCO-STORE: LOCALITY-BASED OBLIVIOUS DATA STORAGE 1405

[29] H. Jingmin and L. Kaicheng, “A new probabilistic encryption
scheme,” in Proc. Advances Workshop Theory Appl. Cryptogr. Techn.,
1988, pp. 415–418.

[30] E. J. O’Neil, P. E. O’Neil, and G. Weikum, “The LRU-K page
replacement algorithm for database disk buffering,” in Proc. ACM
SIGMOD Int. Conf. Manage. Data, 1993, pp. 297–306.

[31] D. Lee et al., “LRFU: A spectrum of policies that subsumes the
least recently used and least frequently used policies,” IEEE Trans.
Comput., vol. 50, no. 12, pp. 1352–1361, Dec. 2001.

[32] Wikipedia contributors, “Taylor series — Wikipedia, the free
encyclopedia,” 2020. Accessed: Jul. 2, 2020. [Online]. Available:
https://en.wikipedia.org/w/index.php?title=Taylor_series&oldid=
964429633

[33] O. Goldreich, The Foundations of Cryptography - Volume 2, Basic
Applications. Cambridge, U.K.: Cambridge Univ. Press, 2004.

[34] E. Lee, S. Yoo, and H. Bahn, “Design and implementation of a
journaling file system for phase-change memory,” IEEE Trans.
Comput., vol. 64, no. 5, pp. 1349–1360, May 2015.

[35] D. Roselli, J. R. Lorch, and T. E. Anderson, “A comparison of file
system workloads,” in Proc. Conf. Usenix Tech. Conf., 2000, pp. 4–4.

[36] R. Koller and R. Rangaswami, “I/O deduplication: Utilizing con-
tent similarity to improve I/O performance,” ACM Trans. Storage,
vol. 6, no. 3, pp. 1–26, 2010.

Wenlong Tian (Student Member, IEEE) received
the MS and PhD degrees from the School of Com-
puter Science and Technology, Huazhong Univer-
sity of Science and Technology, in 2015 and 2019,
respectively. Currently he is currently an assistant
professor with the School of Computer Science
and Technology, the University of South China. His
research interests include cloud computing, sys-
tem security, and big datamanagement.

Ruixuan Li (Member, IEEE) received the BS,MS,
and PhD degrees from the School of Computer
Science and Technology, Huazhong University of
Science and Technology, in 1997, 2000, and 2004
respectively. He is currently a professor with the
School of Computer Science and Technology, the
Huazhong University of Science and Technology,
and is the director of the Intelligent and Distributed
Computing Laboratory. His research interests
include cloud computing, big data, and system
security.

Zhiyong Xu (Senior Member, IEEE) received the
BS and MS degrees in computer science and
engineering from the Huazhong University of Sci-
ence and Technology, China, in 1994 and 1997,
respectively, and the PhD degree in computer
engineering from the University of Cincinnati, in
2003. He is currently an associate professor with
the Department of Mathematics and Computer
Science, Suffolk University. His research inter-
ests include Cloud Computing, Cloud Security,
High performance I/O and File systems, and Par-
allel and Distributed Computing.

Weijun Xiao (Senior Member, IEEE) received the
BS and MS degrees in computer science from the
Huazhong University of Science and Technology,
China, in 1995 and 1998, respectively, and the
PhD degree in electrical engineering from the Uni-
versity of Rhode Island, Kingston, RI. He is cur-
rently an associate professor with the Department
of Electrical and Computer Engineering, Virginia
Commonwealth University, Richmond, VA. His
research interests include computer architecture,
networked storage system, embedded system,
and performance evaluation.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

1406 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 19, NO. 2, MARCH/APRIL 2022

https://en.wikipedia.org/w/index.php?title=Taylor_series&oldid=964429633
https://en.wikipedia.org/w/index.php?title=Taylor_series&oldid=964429633

