
Fast Variable-Grained Resemblance Data
Deduplication For Cloud Storage

Xuming Ye 1, δ, Jia Tang 1, δ, Wenlong Tian 1, ∗, Ruixuan Li 2, Weijun Xiao 3, Yuqing Geng 1, and Zhiyong Xu 4, 5

1School of Computer Science and Technology, University of South China, China
2School of Computer Science and Technology, Huazhong University of Science and Technology, China

3Electrical and Computer Engineering, Virginia Commonwealth University, USA
4Math and Computer Science Department, Suffolk University, USA

5Shenzhen Institute of Advanced Technology, Chinese Academy of Science, China

Abstract—With the prevalence of cloud storage, data dedupli-
cation has been a widely used technology by removing cross
users’ duplicate data and saving network bandwidth. Never-
theless, traditional data deduplication hardly detects duplicate
data among resemblance chunks. Currently, a resemblance data
deduplication, called Finesse, has been proposed to detect and
remove the duplicate data among similar chunks efficiently.
However, we observe that the chunks following the similar
chunk have a high chance of resembling data locality property,
and vice versa. Processing these adjacent similar chunks in
small average chunk size level increases the metadata, which
deteriorates the deduplication system performance. Moreover,
existing resemblance data deduplication schemes ignore the
performance impact from metadata. Therefore, we propose a
fast variable-grained resemblance data deduplication for cloud
storage. It dynamically combines the adjacent resemblance
chunks or unique chunks or breaks those chunks, located at
the transition region between resemblance chunks and unique
chunks. Finally, we implement a prototype and conduct a serial
of experiments on real-world datasets. The results show that our
method dramatically reduces the metadata size while achieving
the high deduplication ratio.

Index Terms—Resemblance Data Deduplication, Cloud Stor-
age, Metadata Size, Variabe-Grained

I. INTRODUCTION

With the development of the internet and electronic device,
people prefer to outsource their data into cloud storage, such
as Google Drive, Dropbox, and Baidu [1]. It achieves more
flexibility and reliability for users’ outsource data. Undoubt-
edly, there is much redundancy among the multi-user cloud
storage scenario. These duplicate data significantly deteriorate
the storage utilization and waste a part of network bandwidth.
Thus, many researchers eliminate these redundant data during
storage processing by introducing data deduplication technol-
ogy.

Data deduplication detects duplicate data based on their
hash values, such as Rabin Fingerprint values. The same data
share one hash value. The deduplication system does not store

δ These authors contributed to the work equally and should be regarded as
co-first authors

∗ Corresponding Author

duplicate data based on the duplicate data detection results.
To explore more redundancy among these data, researchers
break the large data into small chunks. For example, existing
chunking algorithms evolve from fixed-size chunking into
content-defined chunking algorithm such as BSW [2], TTTD
[3], Elastic Chunking [4], and Fast CDC [5] . Thus, the smaller
the chunk size it has, the more redundancy it achieves.

However, traditional data deduplication work only detects
the completely duplicate data but fails to remove redundancy
in resemblance data. Specifically, two chunks share a large
part of the content with a few different bytes, leading to
different hash values. Traditional data deduplication treats
them as unique chunks because of different hash values.
Obviously, the redundancy among similar chunks is hardly
detected. Moreover, there are many redundancies in the multi-
user storage scenario. Detecting and Removing these duplicate
data in similar chunks can further save the network bandwidth
and cloud storage space.

As the state-of-the-art work, N-transform [6] and Finesse
[7] are proposed to detect the redundant data and use the
delta compression to remove the redundancy part. Only the
unique content is stored. In order to ensure a high similarity
detection efficiency, N-transform generates the feature for each
chunk. Furthermore, whether the chunk is a resemblance with
others or not depends on the feature distance. The shorter the
feature distance it has, the more similar the two chunks are. N-
transform extracts all the Rabin fingerprints [8] of a chunk. All
the Rabin fingerprint values are linearly transformed N times
into N-dimensional hash sets. Then, the N maximal values,
one from each of the N dimensions, are selected as features.
Nevertheless, the N-transform suffers from the feature calcu-
lations caused by the linear transformation process.

To further speed up the resemblance detection, Finesse
calculates the chunk features with a grouping strategy [7].
Specifically, it divides the chunk into sub-chunks and extracts
their corresponding Rabin fingerprints into several contiguous
sets of the same size. Then, these values construct the feature
by grouping together based on each set’s rank. The goal of
Finesse is to achieve better performance than the N-transform
method in resemblance detection. Although Finesse improves978-1-7281-7744-1/21/$31.00 © 2021 IEEE

the performance by saving the transform process compared
with N-transform, the existing resemblance detection scheme,
include Finesse, ignores the metadata factor critical in dedu-
plication performance.

Therefore, the metadata factor is critical in deduplication
system performance based on previous research [9]. The
smaller the average chunk size it is, the larger the metadata
it generates. Although the small average chunk size could
detect more duplicate data, it also produces much metadata.
It greatly increases the data management difficulty such as
the data fragmentation problem. Thus, the deduplication ratio
should also consider the metadata factor. which is equal
to unprocessed whole storage size

processed storage size+metadata size . Furthermore, the
situation will be worse in resemblance data deduplication. The
state-of-the-art resemblance detection work induces extensive
computation and produces much more metadata, including the
chunk feature, validation code, and chunk sequence informa-
tion.

In summary, data deduplication is an essential technology in
the cloud storage scenario. Removing the duplicate part among
the resemblance data greatly saves the network bandwidth
and improves cloud storage utilization. However, existing
resemblance data deduplication schemes fail to consider the
metadata factor in deduplication. Therefore, we propose a
fast variable-grained resemblance data deduplication for cloud
storage by considering the metadata factor in resemblance
detection. The essential idea of our work is to avoid un-
necessary resemblance detection computation and decrease
the metadata size through variable-grained resemblance chunk
detection. Thus, we split the data with a high probability
of redundancy in fine-grained during the resemblance data
deduplication while processing the data with a low probability
of redundancy in coarse-granularity. The main contributions in
this paper are summarized as follows:

• Firstly, we analyze the limitation in existing resemblance
data deduplication schemes. The metadata size is critical
in deduplication performance. Dynamically combining
the adjacent resemblance chunks or unique chunks in re-
semblance data deduplication may significantly decrease
the metadata size.

• Secondly, we propose a fast variable-grained resem-
blance data deduplication based on our observations. It
avoids unnecessary resemblance detection computation
and decreases the metadata size through variable-grained
resemblance chunk detection.

• Finally, we conduct extensive simulations to evaluate our
design. The experimental results show that our method
outperforms the state-of-the-art work in metadata size and
the deduplication ratio.

The rest of the paper is organized as follows. The related
work about resemblance data deduplication is summarized in
Section II. In Section III, we analyze the problem of the latest
resemblance detection work in deduplication. Then, we pro-
pose a fast variable-grained resemblance data deduplication for
cloud storage in Section IV. Finally, we present experimental

results and conclude the paper in Section V and Section VI,
respectively.

II. RELATED WORK

With the prevalence of cloud storage technology, data dedu-
plication becomes a critical technology to achieve high storage
utilization and save network bandwidth. The deduplication
technique benefits attract lots of researchers. In this section,
we category the related work into two parts based on whether
the deduplication supports the resemblance detection or not.

A. Traditional Deduplication

The main idea of Traditional deduplication is to remove the
duplicate data by comparing the hash value for each chunk
[10]. Only the unique chunk is stored. It was utilized into var-
ious cloud storage scenario such as primary and backup-level
storage [11]–[14] to remove the redundancy. Other systems
use different approaches to improve the effectiveness of data
deduplication, such as integrating block-level deduplication
with compression [15] and global deduplication method [16].
Moreover, data deduplication has also attracted considerable
attention for virtual machine images [17]–[19]. However,
based on our observation, there are lots of redundancy among
non-duplicate but highly similar chunks. The existing tradi-
tional deduplication can hardly detect and remove the duplicate
part among the resemblance chunks.

B. Resemblance Data Deduplication

To detect and remove the duplicate part among resemblance
chunks, some researchers utilize delta compression, a data
reduction technique, to maximize the compression ratio [6],
[20]. It takes the delta algorithm with delta format to record
the difference between similar chunks. Only the differences
are recorded in delta files. Nevertheless, delta compression can
hardly answer which chunks should be treated as the candi-
dates for delta compression. Therefore, resemblance detection
is the first step for delta compression to determine the resem-
blance among various chunks. Aronovich el at. [21] propose a
novel type of similarity signatures serving in the deduplication
system. It combines similarity matching schemes with byte
by byte comparison or hash-based identity schemes. Xu el
at. [22] propose a similarity-based deduplication system for
database management systems by using byte-level encoding
to achieve greater savings. There are also some other coarse-
grained resemblance detection approaches [6], [23], [24].
These methods extract features from non-overlapped chunks
and may suffer from high false positives.

As the latest work, such as N-transform [6] and Finesse
[7], attempts to improve the resemblance detection accuracy
and performance using the grouping features mechanism. Both
of these methods are chunk-level resemblance detection. In
N-transform, it extracts the top k largest Rabin fingerprint
values of a chunk. Then a super-feature of this chunk can
be calculated by several such features. Furthermore, Finesse
extracts the largest Rabin fingerprint value in each subchunk
and groups the Rabin fingerprint values as the features based

on these values’ ranking. However, the metadata factor is
critical in deduplication system performance based on previous
research [9]. The smaller the average chunk size is , the larger
the metadata it generates. The situation will be worst when
we consider resemblance detection in data deduplication. The
state-of-the-art resemblance detection work induces extensive
computation and produces much more metadata, including the
chunk feature, validation code, and chunk sequence informa-
tion. The existing resemblance detection method does not con-
sider the metadata during the data deduplication processing.

III. PROBLEM STATEMENT

In this part, we mainly discuss the limitations of existing
resemblance data deduplication. To remove the redundancy
among similar chunks, most researchers measure the similarity
among chunks by extracting each chunk content’s features.
The most common feature extraction method is to select the
top k largest Rabin fingerprint values in a chunk as the feature.
Then, the similarity distance could be measured by these
features. Only the different parts are stored according to the
most similar pair of chunks.

However, the existing resemblance data deduplication
scheme [6], [7] fails to consider the metadata factor, which
may deteriorate the performance and increase the management
complexity. The Metadata in a traditional deduplication system
describes the basic chunk hash value and the relationship
among chunks and the original data. The metadata size will
be larger in resemblance data deduplication compared with
the traditional one. Besides the traditional metadata elements,
it also includes each chunk feature, a set of hash values. All
the features should be recorded in the metadata. As the feature
dimension rising, the metadata size will increase dramatically.

This increasing metadata seriously deteriorates the perfor-
mance of the uploading and downloading processes in the
deduplication system. Specifically, the metadata size is related
to the chunk number in deduplication. To explore much more
duplicate data, the fine-grained average chunk size is setted.
The negative impact of this setting is increasing the metadata
size and deteriorates the uploading performance even though
it has the chunk container scheme. It is because that too many
small chunks of uploading degrade the system’s performance.
Similarly, the recovery process in deduplication also needs
to assemble these chunks based on metadata. The situation
will be worsen in resemblance data detection. Moreover,
the existing resemblance data deduplication schemes hardly
consider the metadata factor.

Furthermore, the chunks following the similar chunk have
a high chance to be resemble based on data locality property,
and vice versa. What is more, if we defined two resemblance
chunks’ delta encoding result as a compression result, the
compression results of each adjacent resemblance chunks are
larger than the compression result that we treat these chunks
as a whole. Moreover, treating these chunks at the fine-grained
level without distinction also increases the metadata size.
Thus, we suppose that dynamically combining the adjacent
resemblance chunks or unique chunks in resemblance data

deduplication may significantly decrease the metadata size.
Furthermore, breaking those chunks, located at the transition
region between resemblance chunk and unique chunk, is good
for removing much more duplicate data. Inspired by this
observation, we attempt to design a Fast variable-grained
resemblance data deduplication scheme.

IV. SYSTEM DESIGN

In this section, we first introduce the high-level workflow
about our resemblance data deduplication design. Next, a fast
variable-grained resemblance detection scheme is elaborated.
It aims to decrease the metadata size and keep the high dedu-
plication ratio. Finally, we briefly describe the implementation
of our design.

A. the Overview of Workflow

Based on our observation, our design must avoid unnec-
essary resemblance detection computation and decrease the
metadata size through variable-grained resemblance chunk
detection. Thus, we first process the data slices in coarse-
granularity with a low probability of duplicate data. Then,
we further split the data slices with a high probability of
redundancy in fine-grained. To simplify the description of
our design, we introduce the workflow of our design in two
processes: uploading and downloading, which is shown in
Figure 1.

In the uploading process, the target uploading data is split
into chunks based on coarse-grained average chunk size. Then,
these chunks are categorized into three kinds of chunks, such
as Transition region chunk, duplicate chunk, and non-duplicate
chunk through the interaction with the server. It is because
these chunks are in coarse-grained levels. The client can
easily achieve these chunks’ categories. After achieving this
classified information, the client calculates the duplicate chunk
ratio for the target data based on the divisor value between
the duplicate chunk count and total chunk count. Then, the
client decides whether further divide the whole chunks or
part chunks into sub-chunks in fine-grained level. Finally, the
client extracts the features of non-duplicate chunks or sub-
chunks. Similar chunks are detected based on these features
through the interaction with the server. Only the unique non-
resemblance chunks or sub-chunks, delta file, and metadata
are stored at the server-side.

When the client initiates a remote file request, the server
first locates the file’s corresponding metadata. Then, the related
chunks, sub-chunks, and delta files are located based on meta-
data information. Next, the server recovers the resemblance
chunks or sub-chunks based on the inverse operations of delta
encoding. Then, based on the recovery sequence in metadata,
the server put these related data together and sent the requested
file to the client. It is noted that variable grained resemblance
chunk detection greatly avoids unnecessary resemblance com-
putation and significantly decreases the metadata size detailed
in the following subsection.

Uploading

1.CDC

Rolling window R%D=d

2. Classify the coarse-grained chunks

D1 T1 N2 T2 N3D2 T3

T:Transition regions chunk
D:Duplicate chunk
N:Non-duplicate chunk

𝑑𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑐ℎ𝑢𝑛𝑘𝑠
𝑡𝑜𝑡𝑎𝑙 𝑐ℎ𝑢𝑛𝑘𝑠

3. Calculate duplicate chunk ratio by

4.1[duplicate chunk ratio ≥ threshold] Split
chunks that belongs to transition region Ti in fine-
grained and put different grained-level chunks into
different sets

4.2[duplicate chunk ratio < threshold] Split non-
duplicate and transition region chunks which
marked Di or Ti in fine-grained.

Ti
……

(TSet)

Di
……

(BSet)

Ti
……

(TSet)

Di
……

or

5. Resemblance chunks processing

or

sub-chunki chunkj
Extract chunki’s features

feature1

feature2

feature3

Resemblance
Detection

Features Repository
…… ……

chunkb

…… ……

chunki = chunkb +
delta’ file

Send files to the server, include delta,
metadata file and dissimilar chunksServer

Client

1. Remote file request
Request filei Server

2. Check the metadata

……
metadatai

……

Metadata Repository

Metadatai

0-920B chunkg
920-1689B chunkh
1689-2425B deltai
…… ……
…-1MB chunkj

3. Locate the corresponding chunks or delta files based on metadata

File Repository

… …

… …

Concatenate

delta’ sub-chunkt

4. File recovery

chunkg chunkh sub-chunki

…
sub-chunki+2

Filei
Send Client

Downloading

Decode delta files

N1

sub-chunki

Delta encoding

sub-chunkj=sub-chunkt+

sub-chunks

sub-chunks

sub-chunks

sub-chunkt

delta file Delta encoding

delta chunkb chunkj

sub-chunki+1

chunkjsub-chunki+3

Fig. 1. The Overview of Fast Variable-Grained Resemblance Data Deduplication

B. Fast Variable-Grained Resemblance Detection Scheme

In this subsection, the fast variable-grained resemblance
detection scheme is elaborated as shown in Algorithm 1.
To dynamically detect the duplicate data in resemblance
data detection, we introduce two average chunk size. One is
the coarse-level average chunk size. The other is the fine-
grained average chunk size. For each target data fp, the
fast variable-grained resemblance detection scheme split fp
into chunks based on the coarse-level average chunk size
avg chunk size. Next, the client can determine whether each
chunk is unique or not. Once the cloud server did not store
the chunk’s hash value, it will be treated as a unique chunk.
Next, the client marks the duplicate chunk location based on
these chunks’ sequence.

Then, the client gets a series of coarse-level chunks in
sequence. To faciliate the later fine-grained process, each
unique chunk adjacent to the duplicate chunk is split into sub-
chunks based on fine-grained average chunk size, grain size.
We defined the sub-chunk set as T Set. Furthermore, the
unique chunk that does not adjacent with duplicate chunks
is directly put into the B Set set. Next, the client calculates
each coarse-level chunk’s hash value and marks the duplicate
chunk’s location. After the coarse-level chunking, the client
statistics the duplicate chunks’ proportion init dup ratio in
the target data.

The main reason for statistics is to accelerate the resem-
blance chunk detection. Once the proportion init dup ratio
is less than the threshold, which is a predefined value, the
client will further process the whole unique chunks at a fine-
grained level. Specifically, the whole unique chunks in BSet

need to be split into sub-chunks based on grain size and
put them into the TSet. Finally, each element in TSet and

BSet are calculate the chunk feature based on Finesse [7].
After receiving the chunk or sub-chunk feature, the server can
select a similar chunk and record the different parts by delta
encoding. The metadata in resemblance data deduplication
includes the unique chunk or sub-chunk’s features, chunk hash
value, relationship information among chunks, sub-chunks,
and the target data.

C. Implementation

In this subsection, we briefly describe the implementa-
tion of our design. We use the traditional content-defined
chunking algorithm as the splitting algorithm. Each content-
defined chunking algorithm has an average chunk size setting
parameters. In our design, we take two kinds of average chunk
size parameters. One is the coarse-grained average chunk size
avg chunk size. The other is the fine-grained average chunk
size grain size. It is noted that the threshold in Algorithm
1 is set as 0.01, which is an empirical value. We will further
study it in our future work. In addition, the chunk feature
extraction is the same with the Finesse [7]. Specifically, it
extracts the top k largest Rabin fingerprint values of a chunk.
Then a super-feature of this chunk can be calculated by several
such features. The client extracts the largest Rabin fingerprint
value in each subchunk and groups the Rabin fingerprint values
as the features based on these values’ ranking. Moreover, we
use the VCDiff [25] as the delta encoding implementation.

V. EVALUATION

A. DataSets

To evaluate the effectiveness of our method, we choose
three distinct real-world workloads. The first one is the macOS
workload [26], which collects the snapshots from various

Algorithm 1 Fast Variable-Grained Resemblance detection
scheme
Input: fp: target data path; avg chunk size: coarse-level av-

erage chunk size;grain size: fine-grained average chunk
size;

Output: Delta files, metadata;
1: split the target data fp into coarse-grained chunks, such

as ck1, ck2, · · · , cki, based on avg chunk size
2: for ck1 in cki do
3: calculate each cki’s hash value and mark the duplicate

chunks’ location → Set L
4: end for
5: for each element in Set L do
6: if the i-th element is unique chunk and adjacent with

duplicate chunk then
7: split the cki into sub-chunks such as

sub ck1, sub ck2, · · · , sub ckj ,, based on grain size
8: Chunk Set TSet ← sub ckj
9: else if the i-th element is unique chunk and not

adjacent with duplicate chunk then
10: Chunk Set BSet ← cki
11: end if
12: end for
13: init dup ratio = the duplicate chunk count

the whole chunk count
14: if init dup ratio < threshold then
15: TSet ← split each element in BSet based on

grain size
16: clear all elements in BSet

17: end if
18: for each element in TSet&BSet do
19: calculate each element’s feature and select out the

similar chunks based on server’s feature recording history
through the vector distances

20: do delta encoding and record delta,metadata ;
21: end for

users on the same day. It represents the low deduplicate ratio
workload. The second one is the Kernel dataset [27] comes
from the Linux kernel archives website. The third one is the
SQL Dump dataset including different periods backup and was
reported by [28]. It is noted that these workloads contains
various modification patterns from users’ daily usage. Thus,
we conduct following experiments on these workloads to fairly
evaluate our design’s benefits.

B. Metrics

We evaluate the efficiency of our method using two
metrics: the Delta Compression Ratio(DCR) and the over-
all time (CPU execution time), where the DCR equals to

unprocessed whole storage size
processed storage size+metadata size . We take the DCR as
the metric to evaluate the benefits by considering the metadata
factor. In addition, the speed performance is also critical in
resemblance data deduplication. Thus, we also measure the
the performance of our design by introducing the overall
time cost metric. All the experiments are conducted on a

clustered platform. The cloud is simulated by three machines.
Each machine is equipped with an Intel(R) Core(TM) i7-4790
@3.60Ghz 8 core CPU, 16GB RAM, a 500GB 5400rpm hard
disk and is connected to a 100Mbps network. The OS installed
is Ubuntu 18.10 LTS 64-bit System.

C. Numerical Results and Discussions

First of all, as shown in Figure 2, the DCR in our design
are 3.71%, 4.68%, 1.64%, higher than Finesse, respectively,
when the average chunk size is 2KB, 4KB, 16KB. Our
design uses the principle of locality of similar data (that
is, it is more likely that similar data surround similar data).
The data is divided into granularity processing, focusing on
the most likely to contain similar data. Under the condition
of ensuring the efficiency of deduplication, reduce Metadata
expense caused by the increase in chunks. Finesse makes use
of a grouping strategy, scanning chunks without considering
metadata and dividing them according to the content, then
extracting the feature vector of the chunk, judging similar
data, and performing data deduplication. Due to the excessive
number of sub-chunks, the size of metadata also increases.

In contrast, the DCR of Finese will be low, and during the
recovery of files, metadata detection will increase, which is
not conducive to files’ recovery. At the same time, we can find
that as the chunk length goes from 4K to 8K, the DCR gap
between our method and finesse gradually decreases. When the
chunk length is 16K, the DCR of finesse is almost as same
as that of our method. As the chunk length increases, a file
may be processed as a single chunk, and the locality principle
of the chunk does not play its role. However, all chunks in
Finesse are at a fine-grained level. In addition, as the chunk
length increases, the metadata expense gradually decreases.
Therefore, in general, the difference in DCR between Finesse
and our method gradually decreases as the chunk length
increases.

0.94

0.95

0.96

0.97

0.98

0.99

1

1.01

1.02

2KB 4KB 8KB 16KB

D
C

R

Average Chunk Size

Finesse
Our method

Fig. 2. The DCR in MacOS Workload

There are few similar data in the Kernel dataset, and it is
difficult to divide the chunk by the principle of data locality,

so the DCR of our method and Finesse are not very good.
At the same time, most of the files in the Kernel tarred code
dataset are less than 16KB. Most files may be treated as a
single chunk and cannot be divided into variable granularity,
then causes the gap of DCR between Finesse and our method
to reduce gradually. As shown in Figure 3, when the chunk size
is 16K, our method and Finesse gap is 9.52% . Figure 3 shows
that the DCR of our method is 17.85%, 16.95%, and 13.29%,
higher than those of Finesse from 2KB to 8KB. Although
as the chunk length increases, the advantages of our method
in the locality principle gradually decrease, and the gap with
Finesse gradually decreases. Overall, our method’s efficiency
in data deduplication is still higher than that of Finesse.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

2KB 4KB 8KB 16KB

D
C

R

Average Chunk Size

Finesse
Our method

Fig. 3. The DCR in Linux Kernel Workload

There is a large amount of redundant data in the SQL
Dump dataset due to the dump workload. Therefore, when the
average chunk length is small, the same content will generate
more incremental files, occupying more storage space. So as
the chunk length increases, the DCR of Finesse gradually
increases, while the DCR of our method decreases. The
probability of redundant chunks gradually decreases after
the chunk length increases, so that it is difficult to divide
the data with variable granularity. Most of the data is in
a coarse-grained manner. After processing, the accuracy of
data deduplication gradually decreases. Although the DCR of
our method is gradually decreasing and Finesse is gradually
increasing, the DCR of our method is still higher than that
of Finesse. The variable granularity processing can effectively
reduce the number of chunks, reduce the expense of metadata,
and increase DCR. Compared with our method, the effect of
our method is better.

The overall time cost in the Mac dataset is shown in Figure
5. When the chunk size is 2KB, the speed of our method is
11.07 times that of Finesse, mainly because Finesse needs to
fingerprint the data in the chunk in units of chunks. The code
performs operations such as grouping and sorting. Finally, the
feature vector is obtained. Therefore, the time consumption
cost is higher under the small chunk condition. While our

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

2KB 4KB 8KB 16KB

D
C

R

Average Chunk Size

Finesse
Our method

Fig. 4. The DCR in SQL Dump Workload

method performs variable granularity processing on chunks,
reduces the number of chunks, reduces metadata overhead,
and focuses on calculating chunks that are most likely to
contain redundant data. When the chunk length is from 4KB
to 16KB, the time overhead of Finesse is 4.43, 3.42, 2.29,
and 1.15 times of our method, respectively. It can be seen that
as the chunk length increases, the advantage of our method
gradually decreases, but it is still faster than Finesse. As the
chunk length increases, the proportion of redundant data in
each chunk gradually decreases. Our method needs to perform
fine-grained processing of most chunks to ensure the accuracy
of data deduplication, so the number of chunks increases, and
the cost of time gradually becomes the same as the Finesse.
Nevertheless, on the whole, as the chunk length increases,
the number of chunks decreases in the two methods, and the
detection time cost is gradually reduced. However, the time
cost of our method is lower under comparison.

0

100000

200000

300000

400000

500000

600000

2KB 4KB 8KB 16KB

O
ve

ra
ll

Ti
m

e
C

os
ts

(S
ec

)

Average Chunk Size

Finesse
Our method

Fig. 5. The Overall Time Cost in MacOS Workload

In the kernel dataset, as shown in Figure 6, when the chunk
size is from 2KB to 8KB, the time consumption of our-method

method is lower than that of Finesse, and it is maintained at
about 1/5 of Finesse. In contrast, Finesse needs to perform
a fine-grained scan of all data and obtain feature vectors for
similarity detection through methods such as grouping and
sorting, which are time-consuming. So our method is faster
than Finesse. However, as mentioned above, when the chunk
length increases, the proportion of redundant data in each
chunk gradually decreases, and most of the data needs to be
fine-grained processing. The speed of our method gradually
becomes as same as Finesse. So as shown in Figure 6, when
the chunk length reaches 16KB, the time consumption of our
method and Finesse is similar, and may even be the same.

0

100000

200000

300000

400000

500000

600000

700000

800000

2KB 4KB 8KB 16KB

O
ve

ra
ll

Ti
m

e
C

os
ts

(S
ec

)

Average Chunk Size

Finesse
Our method

Fig. 6. The Overall Time Cost in Linux Kernel Workload

In the SQL Dump dataset, as shown in Figure 7, in changing
the chunk size from 2KB to 16KB, the speed of our method
and Finesse both is reduced due to the decreasing number
of chunks obtained. So the time consumed in the entire
data deduplication process is also reduced. However, in this
process, the time consumption of Finesse is still higher than
our method, which is 4.31, 2.86, 1.94, and 1.33 times slower
than our method, respectively. It can be seen that when chunks
are small,variable-granularity chunks used by our method have
the potential to reduce time consumption. However, as the
average chunk size increases, our method outperforms Finesse.

VI. CONCLUSIONS

With the prevalence of cloud storage, data deduplication
has been a widely used technology by removing cross users’
duplicate data and saving network bandwidth. The paper
summarizes the state-of-the-art resemblance data deduplica-
tion and analyzes their limitations based on our observation.
Specifically, the chunks following the similar chunk have a
high chance of resembling data locality property and vice
versa. Treating these chunks at the fine-grained level with-
out distinction also increases the metadata size. Moreover,
existing resemblance data deduplication schemes ignore the
performance impact from metadata size. Thus, we propose a
fast variable-grained resemblance data deduplication for cloud

0

10000

20000

30000

40000

50000

60000

70000

2KB 4KB 8KB 16KB

O
ve

ra
ll

Ti
m

e
C

os
ts

(S
ec

)

Average Chunk Size

Finesse
Our method

Fig. 7. The Overall Time Cost in SQL Dump Workload

storage. It dynamically combines the adjacent resemblance
chunks or unique chunks into a large chunk to decrease the
metadata while keeping the chunks located at the transition
region between resemblance chunk and unique chunk for a
high deduplication ratio. Finally, we implement a prototype
and conduct a serial of experiments on real-world datasets.
The results show that our method dramatically reduces the
metadata size while achieving the high deduplication ratio.

ACKNOWLEDGMENT

This work is supported by the National Key Re-
search and Development Program of China under grants
2016YFB0800402, National Natural Science Foundation of
China under grants U1836204, U1936108, University of
South China University research foundation under grant
190XQD121, Teaching Reform Foundation under grant
2019YB-XJG30, Natural Science Foundation of Hunan
Province of China under grant 2021JJ40468, Hunan Province
research foundation under grant 19C1624, and the Ministry
of Education Humanities and Foundation on Humanities and
Social Sciences under grant 20YJC880027. This work is also
partly supported by the National Science Foundation under
grant CNS 1526190.

REFERENCES

[1] P. Sharma, R. Jindal, and D. B. Malaya, “Blockchain technology for
cloud storage: A systematic literature review,” ACM Comput. Surv.,
vol. 53, no. 4, pp. 89:1–89:32, 2020.

[2] A. Muthitacharoen, B. Chen, and D. Mazières, “A low-bandwidth
network file system,” in Proceedings of the 18th ACM Symposium on
Operating System Principles, SOSP 2001, Chateau Lake Louise, Banff,
Alberta, Canada, October 21-24, 2001, K. Marzullo and M. Satya-
narayanan, Eds. ACM, 2001, pp. 174–187.

[3] K. Eshghi and H. K. Tang, “A framework for analyzing and improving
content-based chunking algorithms,” Hewlett-Packard Labs Technical
Report TR, vol. 30, no. 2005, 2005.

[4] W. Tian, R. Li, Z. Xu, and W. Xiao, “Does the content defined
chunking really solve the local boundary shift problem?” in 36th IEEE
International Performance Computing and Communications Conference,
IPCCC 2017, San Diego, CA, USA, December 10-12, 2017. IEEE
Computer Society, 2017, pp. 1–8.

[5] W. Xia, Y. Zhou, H. Jiang, D. Feng, Y. Hua, Y. Hu, Q. Liu, and Y. Zhang,
“Fastcdc: a fast and efficient content-defined chunking approach for
data deduplication,” in 2016 USENIX Annual Technical Conference,
USENIX ATC 2016, Denver, CO, USA, June 22-24, 2016, A. Gulati
and H. Weatherspoon, Eds. USENIX Association, 2016, pp. 101–114.

[6] P. Shilane, G. Wallace, M. Huang, and W. Hsu, “Delta compressed and
deduplicated storage using stream-informed locality,” in 4th USENIX
Workshop on Hot Topics in Storage and File Systems, HotStorage’12,
Boston, MA, USA, June 13-14, 2012, R. Rangaswami, Ed. USENIX
Association, 2012.

[7] Y. Zhang, W. Xia, D. Feng, H. Jiang, Y. Hua, and Q. Wang, “Finesse:
Fine-grained feature locality based fast resemblance detection for post-
deduplication delta compression,” in 17th USENIX Conference on File
and Storage Technologies, FAST 2019, Boston, MA, February 25-28,
2019, A. Merchant and H. Weatherspoon, Eds. USENIX Association,
2019, pp. 121–128.

[8] M. Rabin, Fingerprinting by Random Polynomials, ser. Center for
Research in Computing Technology: Center for Research in Comput-
ing Technology. Center for Research in Computing Techn., Aiken
Computation Laboratory, Univ., 1981.

[9] E. Kruus, C. Ungureanu, and C. Dubnicki, “Bimodal content defined
chunking for backup streams,” in 8th USENIX Conference on File and
Storage Technologies, San Jose, CA, USA, February 23-26, 2010, R. C.
Burns and K. Keeton, Eds. USENIX, 2010, pp. 239–252.

[10] A. T. Clements, I. Ahmad, M. Vilayannur, and J. Li, “Decentralized
deduplication in SAN cluster file systems,” in 2009 USENIX Annual
Technical Conference, San Diego, CA, USA, June 14-19, 2009, G. M.
Voelker and A. Wolman, Eds. USENIX Association, 2009.

[11] M. Lillibridge, K. Eshghi, and D. Bhagwat, “Improving restore speed for
backup systems that use inline chunk-based deduplication,” in Proceed-
ings of the 11th USENIX conference on File and Storage Technologies,
FAST 2013, San Jose, CA, USA, February 12-15, 2013, K. A. Smith and
Y. Zhou, Eds. USENIX, 2013, pp. 183–198.

[12] M. Lillibridge, K. Eshghi, D. Bhagwat, V. Deolalikar, G. Trezis, and
P. Camble, “Sparse indexing: Large scale, inline deduplication using
sampling and locality,” in 7th USENIX Conference on File and Storage
Technologies, February 24-27, 2009, San Francisco, CA, USA. Proceed-
ings, M. I. Seltzer and R. Wheeler, Eds. USENIX, 2009, pp. 111–123.

[13] M. Lu, D. D. Chambliss, J. S. Glider, and C. Constantinescu, “Insights
for data reduction in primary storage: a practical analysis,” in The 5th
Annual International Systems and Storage Conference, SYSTOR ’12,
Haifa, Israel, June 4-6, 2012. ACM, 2012, p. 17.

[14] M. Fu, D. Feng, Y. Hua, X. He, Z. Chen, W. Xia, F. Huang, and
Q. Liu, “Accelerating restore and garbage collection in deduplication-
based backup systems via exploiting historical information,” in 2014
USENIX Annual Technical Conference, USENIX ATC ’14, Philadelphia,
PA, USA, June 19-20, 2014, G. Gibson and N. Zeldovich, Eds. USENIX
Association, 2014, pp. 181–192.

[15] A. Upadhyay, P. R. Balihalli, S. Ivaturi, and S. Rao, “Deduplication and
compression techniques in cloud design,” in Systems Conference, 2012.

[16] M. Oh, S. Park, J. Yoon, S. Kim, K. W. Lee, S. Weil, H. Y. Yeom,
and M. Jung, “Design of global data deduplication for a scale-out
distributed storage system,” in 2018 IEEE 38th International Conference
on Distributed Computing Systems (ICDCS), 2018.

[17] K. Jin and E. L. Miller, “The effectiveness of deduplication on virtual
machine disk images,” in Proceedings of of SYSTOR 2009: The Israeli
Experimental Systems Conference 2009, Haifa, Israel, May 4-6, 2009,
ser. ACM International Conference Proceeding Series, M. Allalouf,
M. Factor, and D. G. Feitelson, Eds. ACM, 2009, p. 7.

[18] K. Srinivasan, T. Bisson, G. R. Goodson, and K. Voruganti, “id-
edup: latency-aware, inline data deduplication for primary storage,”
in Proceedings of the 10th USENIX conference on File and Storage
Technologies, FAST 2012, San Jose, CA, USA, February 14-17, 2012,
W. J. Bolosky and J. Flinn, Eds. USENIX Association, 2012, p. 24.

[19] N. Zhao, H. Albahar, S. Abraham, K. Chen, V. Tarasov, D. Skourtis,
L. Rupprecht, A. Anwar, and A. R. Butt, “Duphunter: Flexible high-
performance deduplication for docker registries,” in 2020 USENIX
Annual Technical Conference, USENIX ATC 2020, July 15-17, 2020,
A. Gavrilovska and E. Zadok, Eds. USENIX Association, 2020, pp.
769–783.

[20] P. Shilane, M. Huang, G. Wallace, and W. Hsu, “WAN optimized repli-
cation of backup datasets using stream-informed delta compression,”
in Proceedings of the 10th USENIX conference on File and Storage

Technologies, FAST 2012, San Jose, CA, USA, February 14-17, 2012,
W. J. Bolosky and J. Flinn, Eds. USENIX Association, 2012, p. 5.

[21] L. Aronovich, R. Asher, E. Bachmat, H. Bitner, M. Hirsch, and S. T.
Klein, “The design of a similarity based deduplication system,” in
Proceedings of of SYSTOR 2009: The Israeli Experimental Systems
Conference 2009, Haifa, Israel, May 4-6, 2009, ser. ACM International
Conference Proceeding Series, M. Allalouf, M. Factor, and D. G.
Feitelson, Eds. ACM, 2009, p. 6.

[22] L. Xu, A. Pavlo, S. Sengupta, and G. R. Ganger, “Online deduplication
for databases,” in Proceedings of the 2017 ACM International Confer-
ence on Management of Data, SIGMOD Conference 2017, Chicago, IL,
USA, May 14-19, 2017, S. Salihoglu, W. Zhou, R. Chirkova, J. Yang,
and D. Suciu, Eds. ACM, 2017, pp. 1355–1368.

[23] F. Douglis and A. Iyengar, “Application-specific delta-encoding via
resemblance detection,” in Proceedings of the General Track: 2003
USENIX Annual Technical Conference, June 9-14, 2003, San Antonio,
Texas, USA. USENIX, 2003, pp. 113–126.

[24] G. Forman, K. Eshghi, and S. Chiocchetti, “Finding similar files in large
document repositories,” in Proceedings of the Eleventh ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
Chicago, Illinois, USA, August 21-24, 2005, R. Grossman, R. J. Bayardo,
and K. P. Bennett, Eds. ACM, 2005, pp. 394–400.

[25] J. L. Bentley and M. D. McIlroy, “Data compression using long common
strings,” in Data Compression Conference, DCC 1999, Snowbird, Utah,
USA, March 29-31, 1999. IEEE Computer Society, 1999, pp. 287–295.

[26] V. Tarasov, A. Mudrankit, W. Buik, P. Shilane, G. Kuenning, and
E. Zadok, “Generating realistic datasets for deduplication analysis,” in
2012 USENIX Annual Technical Conference, Boston, MA, USA, June
13-15, 2012, G. Heiser and W. C. Hsieh, Eds. USENIX Association,
2012, pp. 261–272.

[27] W. Tian, R. Li, W. Xiao, and Z. Xu, “Pts-dep: A high-performance two-
party secure deduplication for cloud storage,” in 20th IEEE International
Conference on High Performance Computing and Communications; 16th
IEEE International Conference on Smart City; 4th IEEE International
Conference on Data Science and Systems, HPCC/SmartCity/DSS 2018,
Exeter, United Kingdom, June 28-30, 2018. IEEE, 2018, pp. 700–707.

[28] M. Beller, G. Gousios, and A. Zaidman, “Travistorrent: synthesizing
travis CI and github for full-stack research on continuous integration,”
in Proceedings of the 14th International Conference on Mining Software
Repositories, MSR 2017, Buenos Aires, Argentina, May 20-28, 2017,
J. M. González-Barahona, A. Hindle, and L. Tan, Eds. IEEE Computer
Society, 2017, pp. 447–450.

