
Received: 26 December 2018 Revised: 4 April 2019 Accepted: 29 April 2019

DOI: 10.1002/cpe.5350

S P E C I A L I S S U E P A P E R

Sed-Dedup: An efficient secure deduplication system with data
modifications

Wenlong Tian1 Ruixuan Li1 Cheng-Zhong Xu2,3 Zhiyong Xu4,5

1School of Computer Science and Technology,

Huazhong University of Science and

Technology, Wuhan, China
2Electrical and Computer Engineering, Wayne

State University, Detroit, Michigan
3State Key Laboratory of IoTSC and

Department of Computer Science, University

of Macau, Macau SAR, China
4Math and Computer Science Department,

Suffolk University, Boston, Massachusetts
5Shenzhen Institute of Advanced Technology,

Chinese Academy of Science, Shenzhen, China

Correspondence

Ruixuan Li, School of Computer Science and

Technology, Huazhong University of Science

and Technology, Wuhan 430074, China.

Email: rxli@hust.edu.cn

Present Address

Ruixuan Li, Huazhong University of Science

and Technology, Wuhan 430074, China

Funding information

National Key Research and Development

Program of China, Grant/Award Number:

2016YFB0800402 and 2016QY01W0202;

National Natural Science Foundation of China,

Grant/Award Number: U1836204, 61572221,

61433006, U1401258, and 61502185 ; Major

Projects of the National Social Science

Foundation, Grant/Award Number:

16ZDA092 ; Guangxi High level innovation

Team in Higher Education

Institutions--Innovation Team of ASEAN

Digital Cloud Big Data Security and Mining

Technology

Summary

The amount of outsourced data grows rapidly. In recent years, cloud service providers integrate

data deduplication systems with convergent encryption (CE) methods, in which a file encryption

key is determined by its own content instead of the secret of a specific user, to save the

storage cost and ensure the security of outsourced data. However, present secure deduplication

systems failed to deal with data modifications efficiently. We observe that when a client makes

small changes on an existing file, the current chunking algorithms cannot effectively detect

the similarities and always create chunks with largely overlapped contents. It reduces data

deduplication ratios and results in unnecessary overhead. In this paper, we propose Sed-Dedup,

an efficient secure delta encoding deduplication system to address this problem. In Sed-Dedup,

we introduce a novel delta encoding approach to store modified contents in delta files and

leave the original files intact. Two schemes with different encoding policies are designed. Both

of them can solve the issue and improve the secure deduplication performance. To evaluate

the performance, we implement a prototype and conduct extensive experiments based on

synthetic and real-world datasets. Our experimental results show that Sed-Dedup is superior to

the state-of-the-art secure deduplication systems.

KEYWORDS

chunking algorithms, convergent encryption, data modifications, delta encoding, secure

deduplication

1 INTRODUCTION

With the rapid growth in cloud technology, the cloud storage service attracts great interest. It encourages people to migrate their data onto

remote servers by offering high data reliability and availability with low maintenance cost. Cloud service providers (SP) such as Google Drive,1

Microsoft OneDrive2 and Baidu Cloud3 are getting increasing popular among enterprizes and individual customers. However, the ever rising

amount of data generates great data storage, network communication and maintenance burdens. Providing efficient redundant data elimination

mechanisms becomes a critical challenge.4,5 Various techniques have been proposed. Data deduplication is one of the most widely used

techniques. It achieves great successes and has been adopted in numerous places including Dropbox,6 Mozy,7 etc.

Concurrency Computat Pract Exper. 2019;e5350. wileyonlinelibrary.com/journal/cpe © 2019 John Wiley & Sons, Ltd. 1 of 14
https://doi.org/10.1002/cpe.5350

https://doi.org/10.1002/cpe.5350
https://orcid.org/0000-0003-3177-9099

2 of 14 TIAN ET AL.

Data deduplication methods can be categorized in various manners. The most common strategy divides it into file-level and chunk-level

deduplications based on data partitioning granularity.8 However, in file-level, the amount of data duplications it can remove is limited. In

chunk-level deduplication, files are divided into chunks, and data replication checks are performed at the chunk-level. Although the overhead is

higher, it can achieve better data deduplication ratio. Thus, it is more popular than the first approach in the state-of-the-art deduplication systems.

However, as the data volume stored on the cloud increases exponentially, consumers are becoming increasing worried about the confidentiality

of their data. How to ensure the security and privacy of outsourced data draws high interest from both industry and academia.9,10 Traditionally,

a symmetric encryption algorithm such as DES11 or AES12 can be chosen for data protection. Although it can ensure the data security, it poses

great challenges on data deduplication. For instance, if two users share some common files or chunks, since they use different keys for encryption,

the generated ciphertexts are not the same. Thus, the service provider (SP) cannot discover duplications.

Previous works use Convergent Encryption (CE)13 or Message-Locked Encryption14 to formalize secure deduplication. In CE mechanism, the

key used to encrypt a file or chunk is not bind to a particular owner. It is determined by the data itself and is generated with a collision-free

hash function (such as SHA-115). Thus, the ciphertext of the same plaintext data shared by multiple users remains the same. SP can examine

the redundancy on encrypted data, and execute deduplication operations if necessary. A lot of systems using CE have been implemented.16-18

However, such an approach results in a large number of encryption keys, and the number of these keys expands rapidly as the data volume

amplifies. The encryption key management becomes a headache and greatly reduces the system overall performance. To solve this problem,

SecDep18 introduces User-Aware Convergent Encryption and Multi-Level Key management strategy. Liu et al19 propose a scheme that supports

client-side encryption without requiring any additional independent servers. Tang et al20 aim to do secure deduplication on ciphertext by a new

ciphertext deduplication techniques. Nevertheless, none of them addresses the data modification problem effectively.

For normal users, beyond the operations of uploading the data to the cloud and retrieving their outsourced data from the cloud, making

modifications on their existing data are also very common. Meister and Brinkmann21 analyze how small changes affect the deduplication ratio

for different file types on a microscopic level for chunking approaches. For example, office workers often synchronize multiple version of their

daily documents through the online backup service. Databases administrators also dump database tables on a daily basis. GIT version control

systems22 and Linux Kernel archives23 are other examples. Current secure data duplication solutions cannot solve this issue very well. It can add

large amount of unnecessary overheads such as extra chunk generations, redundant encryptions, excessive data transmissions and additional

encryption key generations, etc. For instance, in SecDep, when a user uploads a file which is a new version of an existing outsourced file, the

key(s) used to encrypt the new version are not the same for the old version with the CE mechanism since the encryption keys are generated

based on the content (file or chunks). Thus, the ciphertext is completely unrelated even if the new version is only slightly different from the old

one. It results in the following issues. First, redundant data between consecutive file versions cannot be effectively deduplicated, extra storage

spaces are needed to store vastly overlapped data files/chunks. Second, the amount of network transmission also increases since more data need

to be uploaded. Consequently, it adds extra processing time as well. Third, more encryption keys are generated. It increases key management

overheads. As time evolves, more data modifications are made and these issues become more severe.

To overcome the above problems, we propose Sed-Dedup, an efficient secure deduplication mechanism. It introduces a delta encoding

protocol24-26 to avoid the redundant storage overhead, reduce the network traffic and relieve the excessive key generation problem. Instead

of uploading complete new modified files, in Sed-Dedup, we only create delta files to keep the modified portions. Two schemes with different

policies are designed. In Sed-Dedup-I, we record the difference between an original file and a modified file in a delta file. It uses the corresponding

delta file's file-level key as the modified file's file-level key. In Sed-Dedup-II, each delta file only records the modified portion of a file with

its nearest predecessor version. Each modified file's file-level key is the same as the corresponding delta file's file-level key. To the best of

our knowledge, Sed-Dedup is the first system designed to address data modification problem in secure deduplication systems. Overall, our

contribution are as follows:

• First, we analyze the data modification problem in current data deduplication systems, and find that it has negative impacts on duplication

detection efficiency in content defined chunking algorithms. It can generate many new chunks with large overlaps on original chunks.

• Second, we design a novel delta encoding protocol, it tracks modified portions among multiple version files. With this approach, we decrease the

key management overhead and also avoid the redundant storage overhead caused by data modifications. The data deduplication performance

is greatly improved, especially for systems with frequent changes.

• Third, we introduce two schemes with different strategies to record modified portions in delta files. We also develop new retrieving strategy

to save the file restore time. Our designs greatly reduces network traffic, decreases processing time and lessens key management overhead.

• Finally, we design and implement a prototype of Sed-Dedup to evaluate its performance. Experimental results show that, based on synthetic

and real world datasets, it has superior performance compared with the state-of-the-art SecDep scheme.

The rest of the paper is organized as follows. In Section 2, we formalize the issues in current secure deduplications. In Section 3, we present

Sed-Dedup system design. In Section 4, we discuss the operational implementation. In Section 5, we first introduce the experimental simulation

configurations. Then, we describe Sed-Dedup performance evaluation compared with SecDep scheme. In Section 6, we analyze the security

issue in Sed-Dedup. In Section 7, we introduce related works. Finally, in Section 8, we conclude the paper and give the future work.

TIAN ET AL. 3 of 14

TABLE 1 Commits per author per quarter on Linux kernel

Author Q2 2016 Q3 2016 Q4 2016 Total

H Hartley 135 147 284 566

Geert 166 143 245 554

Mauro 207 56 211 474

Arnd 75 41 331 447

Mateusz 87 340 16 443

Linux 73 54 265 392

Thomas 133 179 48 360

Others 15 826 15 428 19 992 51 246

Total (3542) 16 702 16 378 21 392 54 482

2 PROBLEM DESCRIPTION

Sed-Dedup aims to design new strategies to solve data storage and communication burdens as well as encryption key management overhead

associated with data modifications in secure deduplication systems. In this section, we formalize the problem.

2.1 Data modification and multiple versions

Small changes made between consecutive file versions is not unusual in real life. For example, in GIT version control system (https://github.com/),

a project can easily have hundreds of commits submitted by a group of developers. Each commit represents a new version which introduces

modifications (insert, update and delete) on a few existing files in the previous commit and/or add some new files. Many other applications also

have the same feature. For example, the database dump file backups.

In this paper, we choose Linux kernel source code archives (http://www.kernel.org) and databases dump files to analyze data modification

issues. Table 1 shows that individual authors commit many modifications per quarter and the number of people involved is also high. There are

3542 authors made a total of 54 482 commits. We examined the logs which record the difference between consecutive commits and found that

most modifications only add/modify/delete a few lines in a limited number of files.

2.2 Problem statement

The state-of-the-art secure deduplication systems such as SecDep cannot deal with the data modification problem. To describe this problem, we

denote that when a file is first uploaded by a user onto the cloud, it is called an original file FO . A file generated by making some modifications

on FO is called a modified file (FM1). Then, another file generated by modifying FM1 is called FM2, and so on. In SecDep, the system determines if a

file (either a FO or a FMK) has already been uploaded to the cloud by checking the file tag. If the corresponding file tag does not exist, the file is

split to chunks. The system checks if any of the chunks has already been uploaded using the chunk tags. Finally, only the chunks not stored on

the cloud are encrypted and uploaded. Clearly, in most cases, FO and FMs have to be split to chunks. The effectiveness of detecting redundant

contents in chunks is highly depended on the amount and the positions of modifications. Although different chunking algorithms have distinct

features and some can discover more common chunks than others, none of them can successfully detect most common contents.

We conduct an experiment to evaluate the efficiency of various chunking algorithms on data modifications. The result is shown in Table 2.

Three commonly used chunking algorithms, including fixed-sized chunking, content defined chunking (CDC),27 and Two threshold and Two

Divisors chunking algorithm (TTTD)28 are chosen. FO is a randomly generated file which has the size of 1M. FM is created by randomly updating

FO , the amount of modification is 0.01 MB. The average chunk size is 2 kB.

TABLE 2 Chunking algorithms comparison

Algorithm Aa Bb Cc Dd Ee

Fixed-size 512 518 1030 0 518

CDC 481 490 680 291 199

TTTD 467 473 640 300 173

aThe total number of data chunks in FO .

bThe total number of data chunks in FM .

cThe total number of data chunks to be uploaded.

dThe number of duplicate chunks detected.

eThe number of new data chunks to be uploaded for FM .

https://github.com/
http://www.kernel.org

4 of 14 TIAN ET AL.

As we can observe from the result, fixed-sized chunking cannot detect any overlaps between FO and FM , and has to create 518 new chunks.

CDC27 and TTTD28 work better, but still generate 199 and 173 extra chunks, respectively.

Clearly, the cloud storage is not efficiently utilized since it contains many similar chunks. The data deduplication performance is expected to

be worse as more modifications are added.

Recently, some new chunking algorithms without any help from server are proposed.4,29-35 However, most of them are dedicated to improve

the throughout of chunking process. In terms of the dedup ratio metric, these new algorithms have similar performance as TTTD. In this paper,

we focus on the reduced deduplication ratio problem caused by frequent small data modifications. Thus, we decide to choose the representative

TTTD and sliding-window CDC and fixed-size chunking algorithm to show the impact.

3 SED-DEDUP SYSTEM ARCHITECTURE

To solve the above problems, Sed-Dedup introduce a novel delta encoding protocol and two schemes with different encoding policies. In this

section, we introduce Sed-Dedup architecture in detail. To simplify the discussion, we denote entities in a secure deduplication system in Table 3.

3.1 System overview

We assume clients use the cloud storage service as a real-time backup system and make modifications regularly. In Sed-Dedup, we study the

following two major operations: upload and restore.

When a user wants to upload a file, we consider two scenarios. If it is the first time to be uploaded by any user, we denote this file as an

original file FO . In this scenario, Sed-Dedup takes the same process as SecDep to handle the file backup operation. First, the KO is generated with

CE. Next, the system applies the tag algorithm to produce TO and sends it to the SP. SP searches its internal data store to check whether TO is

already uploaded by another user or not. If yes, the process finishes after informing the current user a successful backup signal. If not, FO has to

be split into chunks. The chunk-level keys are generated with CE again and the chunk tags are created with the same tag algorithm as well. The

chunk tag information is sent to the SP to execute the duplication check. Only the chunks not stored on the SP are uploaded.

In the second scenario, the file to be uploaded is a new version of an original file, FM . Unlike the previous solutions which treat it as another

FO , Sed-Dedup introduces a novel delta encoding protocol by only recording the modification part of FM to avoid the chunking problem we

mentioned in Section 2. Then, the delta file, which records only the difference, is treated as a new file instead of the whole FM and is stored on

the SP. The delta file's file-level key is treated as FM 's file level key. Note that choosing different strategies in delta encoding process will affect

the performance. We propose two schemes and the details will be discussed later.

When a user wants to retrieve a file from the SP, we also consider two scenarios. If the user asks for a FO , Sed-Dedup uses the same strategy

as SecDep to download the file. If the requested file is a FM , the retrieving strategy depends on which Sed-Dedup scheme is chosen. The

fundamental principle is to download only the ciphertext of the delta-encoded contents. In Sed-Dedup, we assume a user treats the SP as a

replication service for its local files in most cases. Therefore, when a user uploads a file onto the SP, the user's local file system always stores a

copy. In this case, a user might only need to download the corresponding delta file(s) from SP to restore the FM (May created by another user).

Certainly, the original file may be deleted after uploaded onto the SP. This is the worst scenario, the user needs to download FO as well as the

corresponding delta file(s) to recover FM .

TABLE 3 Notations

Notation Description

FO An original file

KO The file-level key of the original file

TO The file tag of the original file

PO The plaintext of an original file

FM A modified file

FMi The i-th modified version of the file FO

TM The tag of a modified file

PM the plaintext data of a modified file

DKS Distributed key servers

SP The storage server

CE Convergent Encryption

SSSS Shamir Secret Sharing Scheme

TIAN ET AL. 5 of 14

F F F F… …

F F

…
 …

F F F
upper

User id TO Version

bottom
TMUse d Ve s o

FIGURE 1 A sample inheritance map

3.2 Delta encoding protocol

In Sed-Dedup, we associate a FO with its consecutive FMs for more effective treatment. We use an inheritance map, as shown in Figure 1, to

maintain the relationships between an FO and multiple successive FMs. When a user sends a request to backup a file which is a FM of an existing

FO , delta encoding protocol is executed. Here, we assume FO or a previous FM′ (the comparison data) is stored on the user's local space (the user

downloads it if it does not exist). The user communicates with the SP and verifies if FM has already been stored in the cloud using the file-level

tag of FM . If not, the delta encoding process starts.

A delta file is generated on the user's local machine by examining the difference between the comparison data and FM , and it is stored in the

plaintext format first. Delta files are stored in ciphertext on the SP to ensure the data security. Thus, after a plaintext delta file is created, we

apply CE to generate the file-level key of FM . If the modification in a delta file is larger than a chunk, multiple encrypted chunks are created.

Finally, those chunks are uploaded onto the SP. Clearly, with the delta encoding protocol, Sed-Dedup minimizes the redundant chunks. Such an

approach is very efficient for files with multiple consecutive modifications.

3.3 Sed-Dedup-I

We design two schemes for Sed-Dedup. In Sed-Dedup-I, each of the consecutive versions generates a delta file by comparing with the FO directly.

When a user wants to upload a modified FM onto the SP, TM is calculated first. Then, the server checks whether this version has be uploaded or

not; if not, a delta file is created by recording the difference between the FM and FO (already stored on the SP). Next, a file-level key is generated

with CE based on the content of the delta file. The user only need to upload the ciphertext of the delta file instead of the ciphertext of entire FM .

Sed-Dedup-I can change a file Fij's store mode into the original mode when a user wants to share it with other users. Here, i denotes the

modified file id, j denotes the version number. Then, Fi(j+1) and later versions use Fij as a an original file during the delta encoding process. In this

case, the overhead of sharing modified version data with others is very high. When many users share all their versions, it essentially becomes

SecDep. This issue is relieved in Sed-Dedup-II. The detail is presented in Section 3.4.

Another problem of Sed-Dedup-I is that as the number of versions increases, the difference between the newest FM and FO increases, so does

the size of the delta file. This problem can be relieved as the delta files for multiple versions can share some common data and deduplicated.

However, it is still higher than Sed-Dedup-II.

An advantage of Sed-Dedup-I is that, when a user wants to restore a FM , the user only need to download one delta file for the modified portion.

3.4 Sed-Dedup-II

In Sed-Dedup-II, a delta file is generated by comparing Fi(j+1) with Fij. Here, Fi(j+1) is compared directly with its immediate predecessor Fij. Thus,

each delta file only records the modifications between two consecutive versions. As Sed-Dedup-I, the client also uses the standard CE and tag

generation algorithms to produce the file-level key and the file tag for Fi(j+1).

Clearly, the main difference between these two schemes is which data is chosen as comparison data in delta encoding process and the restore

process. Sed-Dedup-II chooses the previous version as comparison data instead of the original data. In the restore process, it may need to fetch

several delta files to reach the target modified version, while Sed-Dedup-I only need to fetch one delta file in most scenarios. Both of them also

need to download FO in the worst case.

For data sharing, Sed-Dedup-II only changes Fij's store mode into the original mode, when a user wants to share it with other users. However,

there is no need to change the subsequent version's delta file since it is the comparing result between the modified version and its previous

version. So the overhead of sharing modified version is much lower.

6 of 14 TIAN ET AL.

3.5 Data encryption scheme

In Sed-Dedup, for a FO , three kinds of keys exist, including the file-level key, the chunk-level keys and the share keys. They have different

functionalities. Both the file-level key and the chunk-level keys are traditional CE keys, respectively associated with the corresponding file and

chunk content. They should be kept secret during encryption/decryption processes on the SP. Thus, chunk-level keys are encrypted with the

corresponding file-level key and stored on the SP. In SecDep, to prevent single point of failure problem, share keys are created for each file-level

key using the SSSS algorithm, and those keys are distributed over multiple key servers in DKS. In Sed-Dedup, we use the same approach.

For a modified file FM , we create the file-level key and chunk-level keys on each delta file based on the same algorithm, and then use this

file-level key as the FM 's to encrypt chunk level keys. Finally, those encrypted keys are stored on the SP. With this approach, we decrease the

chunk-level keys for each FM , and greatly reduce the burden on key management and improve deduplication performance.

4 IMPLEMENTATION DETAILS

Sed-Dedup consists of the following entities including the storage servers (SP), the distributed key servers (DKS) and the clients. Similar to

SecDep, DupLESS, and Dekey, standard encryption and signature algorithms such as SHA-256, MD5, and AES-256 are used. In Sed-Dedup,

we implement chunking algorithms, file-level/chunk-level key generation, tag generation, and delta encoding/decoding algorithms. We also

implement the functionalities on the SP and DKS.

4.1 Chunking algorithm

Chunking operation is very important in data deduplication systems. There are many chunking algorithms have been developed such as Fixed-size

Chunking, Content Defined Chunking,27 and Two Thresholds and Two Divisors Chunking,28 etc. In Sed-Dedup, the default chunking algorithm

is TTTD. Four parameters are used, namely, maxT, minT, mainD, and secondD. maxT and minT define the maximum and minimum chunk sizes

and are used to avoid generating too large or too small chunks. mainD is an integer divisor which plays the same role as in Basic Sliding Window

algorithm (BSW).36 In general, the value of secondD is half of mainD.

TTTD in Sed-Dedup system works as follows. First, it tries to create the fixed-size window W. It shifts one byte each time from the head to

the end. When the size of the window reaches the minT, it starts to determine the backup breakpoint and real breakpoint with secondD and

mainD. The process includes two formulation tests (h mod secondD) == (secondD-1) and (h mod mainD) == (mainD-1), where h is a hash value

for the current content in W. The hash value h is generated by Rabin Fingerprinting (RF) algorithm27 with the window content, h = RF(W). If the

position fits the second formulation test, it is treated as a backup breakpoint. If it also passes the first formulation test, the backup breakpoint is

chosen as a real breakpoint. When the algorithm cannot find a real breakpoint after reaching the threshold, maxT, maxT is chosen to generate

the breakpoint in W. In Sed-Dedup, we choose the parameters in TTTD according to the experimental results in Kave and Khuern.28

4.2 Delta encoding and decoding algorithm

To achieve better deduplication performance, Sed-Dedup only records the difference of a FO/FM and a consecutive FM in delta files. Delta

encoding algorithm with the VCDIFF (https://tools.ietf.org/html/rfc3284) format is used. It is a general, efficient, and portable data format

suitable for encoding compressed and/or differencing data. VCDIFF uses three types of instructions, namely, ADD, COPY, and RUN. Detailed

explanation of these instructions are in Table 4. We describe VCDIFF with an example in Figure 2.

As Figure 2 shows, T is a target data and S is a source data. A delta file is generated to record the difference between S and T. When a client

tries to restore T, Table 5 shows the reconstruction process. Initially, the temporary target data is empty. The system executes the instructions

one by one in the delta file. With the COPY 4, 0 instruction, the first 4 characters in S is copied to the temporary target. Next, the ADD 4,

wyxz instruction results in the characters wxyz are added to the end of the temporary target. The operation continues, until eventually all the

instructions in the delta file are executed. Finally, we successfully reconstruct the target data T.

TABLE 4 Instruction in VCDIFF

Instruction Explanation

ADD x, y x is a size, y is a sequence of x bytes to be copied

COPY x, y x is a size, y is the address in superstring U, the substring of U will be copied,

where U: S[0]S[1].....S[s-1]T[0]T[1].....T[t-1]

RUN x, y x is a size, y is a sequence that will be repeated x times

https://tools.ietf.org/html/rfc3284

TIAN ET AL. 7 of 14

FIGURE 2 Sample delta file

TABLE 5 Reconstruction process

Delta Instruction Restored Target Chunk for Each Instruction

COPY 4,0 abcd

ADD 4, wxyz abcdwxyz

COPY 4, 4 abcdwyxzefgh

COPY 12, 24 abcdwyxzefghefghefghefgh

RUN 4, z abcdwyxzefghefghefghefghzzzz

5 PERFORMANCE EVALUATION

To evaluate Sed-Dedup performance, we conduct extensive simulation experiments to compare it with the state-of-the-art secure deduplication

system, SecDep. In this section, we first introduce experimental configurations, and then we present evaluation results compared with SecDep.

5.1 Experimental setup

All the experiments are conducted on a distribution platform. Each machine is equipped with a Intel(R) Core(TM) i7-4702MQ @2.20 GHz 8 core

CPU, 8 GB RAM, a 1 TB 5400 rpm hard disk and is connected in a 100 Mbps network. The OS installed is Ubuntu 15.10 LTS 64-bit System.

Due to the lack of the SecDep source code, we implement it by ourselves. We also implement Sed-Dedup. Both are written in Java. We use

SecDep as the baseline. We use the following metrics, backup size, backup time, encryption key storage space overhead, delta encoding time for

evaluation. Note that our evaluation platform is not a commercial quality system but rather a research prototype. Hence, our evaluation results

should be interpreted as an approximate and comparative assessment. Liu et al19 designed a method to relieve the key management overhead

with client-side encryption, and does not require the assistance from any independent servers. However, it only works for file-level encryption.

When applied to block-level encryption, it works poorly. In Sed-Dedup, we focus on th performance on the block-level encryption. Thus, we do

not compare Sed-Dedup with the work of Liu et al.19

In our experiments, we use three types of datasets. The first type consists of a group of artificial files created with randomly generated content.

Each file has a version number and consecutive files have randomly modifications on a previous version. The second dataset contains multiple

versions of Linux kernel source code from (http://www.kernel.org). As we mentioned in Section 2, these versions contain a large number of

small updates which are good representations of the data modification problem. The third dataset contains multiple versions of mysql dump files,

which also has various amount of consecutive modifications.

(A) (B) (C)

FIGURE 3 Single file random modification time comparison result under two-versions scenario. A, Average chunk size: 2 kB; B, Average chunk
size: 4 kB; C, Average chunk size: 8 kB

http://www.kernel.org

8 of 14 TIAN ET AL.

(A) (B) (C)

FIGURE 4 Single file random modification time comparison result under three-versions scenario. A, Average chunk size: 2 kB; B, Average Chunk
size: 4 kB; C, Average Chunk size: 8 kB

5.2 Backup time comparison for single file modification

First, we check the backup time performance with one and two consecutive modifications in the first dataset. In this set of experiments, the sizes

of the original file vary from 32 kB to 128 MB. Those files are created with random content. Each time, the amount of modification is set as 3%

of the original file size. To evaluate the impacts of average chunk sizes, we conduct our experiments with 3 different average chunk sizes: 2 kB,

4 kB, and 8 kB. Figure 3 shows the backup result of one original file and one modified version file (Two-Versions Scenario). Figure 4 is the backup

result with two modified version files (Three-Versions Scenario).

As we can observe from Figure 3A, in all scenarios, Sed-Dedup takes much shorter time. Furthermore, Sed-Dedup-I and Sed-Dedup-II have

the similar performance dealing under Two-Versions scenario. It also shows that, as the file size increases, the backup time difference becomes

larger. When the FO size is 128 MB, Sed-Dedup only takes 56 390 ms to backup the difference while SecDep needs 154 754 ms to finish the

operation. Sed-Dedup only takes 36.44% of time SecDep consumes. On average, Sed-Dedup takes 67.11% of time SecDep needs to backup.

Apparently, by using delta encoding protocol, the amount of data transmission is also greatly reduced, so does the total operation time. The same

trend holds as we can observe from Figures 3B and 3C. With the average chunk sizes of 4 kB and 8 kB, Sed-Dedup outperforms SecDep for

almost all the scenarios.

Since the increasing number of versions can make delta files become large quickly in Sed-Dedup-I, there is still some space to improve by

using Sed-Dedup-II. To evaluate the difference, we examine the backup performance on Three-Versions scenario. The results are shown from

Figure 4A to 4C. On average, it takes much less time in Sed-Dedup-II. We also conduct experiments on even more number of consecutive

modified versions and the results show the same trend.

5.3 Backup time analysis

To further understand the benefits of using Sed-Dedup, we decompose the backup time based on the operational steps. In SecDep, the backup

time includes key & tag generation time, split time, search time, data encryption time and transmission time. In Sed-Dedup, it consists of key & tag

generation time, searching time, encryption time, delta time and transmission time. Here, delta time represents the time consumed to generate

the delta file using our delta encoding approach. We evaluate the performance with the average chunk sizes of 2 kB, 4 kB, and 8 kB under the

same two scenarios: Two-Versions and Three-Versions. The results are displayed in Figure 5A and Figure 5B.

(A) (B)

FIGURE 5 Backup time decomposition. A, Backup time decomposition under two-versions scenario; B, Backup time decomposition under
three-versions scenario

TIAN ET AL. 9 of 14

As we can discover, in both scenarios, Sed-Dedup outperforms SecDep. In Figure 5A, when the average chunk size is 2 kB, the backup time in

Sed-Dedup is only 36.48% of that in SecDep. For larger average chunk sizes, SecDep achieves better performance as the accumulative backup

time decreases. However, it is still much higher than Sed-Dedup. The most time consuming steps in SecDep are key generation, split and transfer

times. Apparently, a large portion of the time is wasted on unnecessarily generated new chunks which contain vastly overlapped data. While

in Sed-Dedup, we avoid this problem with the delta files. It greatly reduces the key generation time. Even though it adds the delta time and

key generation time, it is still much shorter than the key generation overhead in SecDep. It is because each version in Sed-Dedup needs to be

split into chunks and each chunk in Sed-Dedup will generate a chunk-level encryption key while only the delta file's ciphertext recording the

difference of consecutive version in Sed-Dedup will be uploaded into the cloud. Moreover, unlike the SecDep, Sed-Dedup will utilize the delta

encoding process to record the difference among version files instead of splitting modified version files into chunks.

In Figure 5B, Sed-Dedup-II achieves even more performance improvement under Three-Versions scenario than Sed-Dedup-I. Furthermore,

the costs for splitting, transferring and encrypting the data also decrease. In Figure 5B, when chunk size is 4 kB, the key generation cost in

Sed-Dedup's two schemes are 5.87% and 5.22% of that in SecDep, respectively. For splitting cost time, Sed-Dedup-I is 11.92% of that in SecDep,

while Sed-Dedup-II is 78.99% of that in Sed-Dedup-I. The transmission time in Sed-Dedup-II is 78.61% of that in Sed-Dedup-I. Both schemes in

Sed-Dedup are one order less than that of in SecDep for the chunk tag check time.

As we can observe that, the majority time spend in Sed-Dedup is on delta operations. Thus, it is determined by the amount of the modified

data volume and does not change too much no matter what chunk size the system uses.

5.4 File restore time comparison

We also evaluate the file restore time. In Sed-Dedup, two conditions may occur. If FO is not stored on the local storage, Sed-Dedup has to

download it from the SP in addition to the delta files. We consider this as the worst case. If it is already stored locally, Sed-Dedup only retrieve

the delta files. We denote it as the general case.

Table 6 and Table 7 show the comparison results. SecDep has slightly better performance than the worst case in Sed-Dedup. This is because

Sed-Dedup has to download FO and the delta files while the only data to be retrieved in SecDep is the modified file. However, Sed-Dedup greatly

reduce the restoring time in the general case. Since the user already has the FO , the system only need to download the delta files. As shown in

Table 7, as the version count increases, Sed-Dedup-II consumes more time than Sed-Dedup-I. This is because Sed-Dedup-II needs to download

more delta files compared with Sed-Dedup-I as the version count increases. Sed-Dedup-I only need one delta file no matter how many versions

are generated. However, both of them outperform SecDep.

5.5 Key management overhead

Besides the data storage overhead, the key management overhead is not negligible in secure deduplication systems. In this set of experiments, we

evaluate the number of keys need to be generated as the number of modified files increases. The result is shown in Figure 6. As we can observe

from the results, as the number of modified files increases, the number of keys caused by modified files in SecDep increases from 100 288 for

the first new Linux kernel version to 229 022 for the sixth version. For mysql dump files, it increases from 135 285 to 467 014. We can expect

that this number increases linearly as more versions are added. While in Sed-Dedup, both two schemes generate less keys. The file-level keys

in Sed-Dedup are about the same with SecDep. However, the number of chunk level keys are far less in Sed-Dedup since the introduction of

delta files generates much fewer chunks compared with the original file. Apparently, Sed-Dedup can greatly reduce the key generation and

management overhead.

TABLE 6 A single file restore operation comparison under two-versions scenario

File Size 32 kB 128 kB 512 kB 2 M 8 M 32 M 128 M

SecDep (ms) 1624 1920 3201 7270 21 797 74 782 311 689

Sed-Dedup-I General Case (ms) 55 52 158 574 1956 4910 25 589

Sed-Dedup-I Worst Case (ms) 1677 2066 3470 8194 24 570 81 195 348 956

Sed-Dedup-II General Case (ms) 51 59 148 599 1903 4992 25 763

Sed-Dedup-II Worst Case (ms) 1675 1979 3349 7869 23 700 79 774 337 452

TABLE 7 A single file restore operation comparison under three-versions scenario

File Size 32 kB 128 kB 512 kB 2 M 8 M 32 M 128 M

SecDep (ms) 1490 1999 3248 7754 22 644 76 457 335 687

Sed-Dedup-I General Case (ms) 53 146 269 924 2773 6413 37 267

Sed-Dedup-I Worst Case (ms) 1543 2145 3517 8621 25 411 82 753 364 523

Sed-Dedup-II General Case (ms) 70 160 328 1126 3209 7687 56 284

Sed-Dedup-II Worst Case (ms) 1560 2159 3576 8823 25 847 84 027 383 540

10 of 14 TIAN ET AL.

(A) (B)

FIGURE 6 Number of encryption keys comparison. A, Backup multiple Linux kernel versions; B, Backup multiple Mysql dump files

(A) (B)

FIGURE 7 Storage space consumption comparison. A, Backup multiple Linux kernel versions; B, Backup multiple Mysql dump files

5.6 Real world dataset evaluation

5.6.1 Storage space consumption

In this experiment, we choose the second and third datasets for evaluation. We select 7 Linux kernel versions, the lowest numbered version is

chosen as an original file set. For mysql dump files, we also choose the lowest version as the original file and others as modified versions. Here,

we assume an original version is already stored on the SP, and case 1 represents that we backup one more version, case 2 means we backup two

more versions, and so on.

Figure 7 shows the total backup storage consumption comparison results. Sed-Dedup and SecDep have tremendous performance difference.

The backup size due to the modified files in Sed-Dedup increases much slower than SecDep. When there is one more kernel version stored, the

backup size in Sed-Dedup-I is increased by 40 MB while it is increased by 188 MB in SecDep. The difference becomes wider as more kernel

versions need to be stored. With 6 modified versions, the increased backup size is 218.43 MB in Sed-Dedup-I while it is 635.47 MB in SecDep.

Clearly, this problem is caused by the inefficient chunking algorithm used in SecDep. For mysql dump files, the backup size in Sed-Dedup-I

increases 49.44 MB, while it is increased by 193.63 MB in SecDep. As the version count increase to 6, the added backup size is 467.18 MB in

Sed-Dedup-I while it is 1277.42 MB in SecDep. Using Sed-Dedup-II can achieve even better performance. The final backup size in Sed-Dedup-II

is 112.01 MB smaller than Sed-Dedup-I for Linux kernel datasets. For mysql dump file datasets, the number is 97.23 MB.

5.6.2 Storage time comparison

Figure 8 shows the backup time comparison results. Similar to the storage consumption results, Sed-Dedup outperforms SecDep in all scenarios.

Furthermore, Sed-Dedup-II is much faster compared with Sed-Dedup-I. Based on the above results, we can conclude that Sed-Dedup achieves

better performance than SecDep for the real world datasets. There are two factors for this improvement. First, Sed-Dedup only needs to keep

the modified portions in delta files, it contains no or few duplications comparing with the previous version. Consequently, it can not only avoid

the large number of chunking generation overhead, but also reduce the transferring time. While in SecDep, this is not the case. Second, SecDep

takes extra time for new encryption key generation, while in Sed-Dedup-I, the number of new encryption keys is much lower. Thus, we can

greatly decrease this overhead. Sed-Dedup-II is even faster because it slows down the growth of keys even further.

TIAN ET AL. 11 of 14

(A) (B)

FIGURE 8 Storage time consumption comparison. A, Backup multiple Linux kernel versions; B, Backup multiple Mysql dump files

6 SECURITY DISCUSSION

In this section, we analyze the data and key security property in Sed-Dedup. We assume the underlying encryption and hash algorithms such as

CE and SSSS are secure.

In reality, an adversary may try to compromise the SP or collude with users. When it happens, the chunks on the SP are accessible to the

adversary. Thus, it can conduct the brute-force attacks to extract plaintext. Assume the adversary knows the encryption algorithm, once it attains

the knowledge that some particular chunks might from a specific plaintext set S, it can encrypt each chunk in S to get the ciphertext and compare

with the ciphertext obtained from the SP. If there is a match, the adversary knows the plaintext of the corresponding chunk. It can continue

further attacks based on partial results. When the adversary colludes with some legitimate users, it may perform the duplicate-faking attacks on

the data by uploading its own chunks which have correct tags but wrong contents.5

Sed-Dedup can avoid the above problems and ensures data confidentiality. When a user backups new files, each chunk is encrypted with

the corresponding chunk-level key before uploading to the SP. Since each chunk-level key is generated by the content of chunks, breaking the

confidentiality of the user's data after delta encoding is extremely difficult. Sed-Dedup can resist duplicate-faking attacks by comparing chunk

tags since each chunk also has a tag, a hash value of the ciphertext of chunks. When a user backups a modified file, the brute-force attacks and

duplicate-faking attacks can also be prevented. Instead of uploading the ciphertext of the modified file, Sed-Dedup uploads the chunks of delta

files onto the SP. All of the chunk-level keys are encrypted by the corresponding file-level key. Therefore, it is difficult to break the confidentiality

of user's data, even though an adversary compromises with the SP. For the duplicate-faking attacks, each chunk-level key is encrypted by the

file-level key. Each delta file also has a modified file tag, generated by the ciphertext of the modified file. Therefore, the user can resist the

duplicate-faking attacks by comparing hash value with its tag. Furthermore, the adversary also need to restore the plaintext of the original file

when they want to get the plaintext of the modified file, it makes the attack even harder.

For key security, all the three types of keys including chunk-level keys, file-level keys and shared-level keys need to be considered. All the

chunk-level keys are encrypted by the corresponding file-level keys before stored on the SP and all the file-level keys are divided into multiple

share keys distributed on DKS. The security guarantees in SecDep also holds in Sed-Dedup.

7 RELATED WORK

Data deduplication is a special compression technique to reduce the storage space consumption. Thus, it has been widely used in archival and

backup systems to improve space utilization efficiency.8 Venti37 is a network storage system which applies the unique hash value as the block

identifier for deduplication to prevent accidental or malicious destruction of data. However, it is not suitable for large scale data applications.

Hong et al38 designed a duplication elimination algorithm. It was running as a background process in a SAN file system. By integrating content

hashing, copy-on-write, and lazy update technique, it can improve system performance and save storage occupation. MAD239 proposed a

scalable high throughput deduplication mechanism for network backup services by eliminate duplicate data at the file-level and the chunk-level.

To achieve high performance, MAD2 focused on the hash bucket matrix organization and used Bloom Filter Array as a quickly indicator to find

a possible duplicate. The above systems determine data duplications based on the locality check. However, they were not working well if not

sufficient locality can be discovered.

Other systems use different approaches. Extreme Binning40 presented a scalable deduplication technique. It can discover data duplication

based on similarity instead of locality. PeerDedupe41 proposed a novel scheme called PeerDedupe to conduct an in-depth and quantitative

investigation on the peer-assisted deduplication. It is designed for mainstream server-side deduplication. In addition, many other deduplication

12 of 14 TIAN ET AL.

system architecture have been developed such as Opendedup,42 and lessfs,43 etc. However, None of them considered the security problem

during deduplication processs.

Secure data deduplication preserves the confidentiality of outsourced data by adding encryption functionality. Most secure deduplication

systems adopt Convergent Encryption (CE)44 to enforce the data security while making cross-user data duplication checks feasible. It is a

deterministic encryption mechanism.5 utilizes the message-locked encryption to protect data confidentiality by transforming the predictable

messages into unpredictable messages. It proposes system architecture to use third party key servers, and generates file tags for data duplication

checks. Jia et al45 address security concerns in cross-user deduplication of encrypted files in the cloud storage. They enhance and generalize the

CE method on their own efficient hash function with large output sizes.

However, CE method results in key management problems since each file or chunk has a separate encryption key. To solve this problem,

Clouddedup46 backups the convergent keys on external key servers and develops a secure and efficient storage service. DupLESS17 uses a key

server via RSA-ORPF protocol to manage the keys. However, directly storing the keys on the key server suffers from the simple point of failure

problem. Therefore, CEKM47 proposes a method to break each key with Shamir secret Sharing scheme (SSSS) to generate multiple share keys

and distributes them on separate servers to solve the problem. However, in CEKM, the management of the large number of chunk-level keys

greatly increases the management overhead.

Liu et al19 propose a new secure deduplication scheme which supports client-side encryption without any additional independent servers. It

is based on password authenticated key exchange mechanism. All the users have a common session key if they share a short secret "password".

However, the performance of this scheme decreases sharply when it is applied for block-level deduplication. Tang et al20 introduce a novel

ciphertext deduplication technique. It applies the deduplication methods based on a classical CP-ABE scheme.48 However, the author did

not disclose the specifical deduplication ratio performance comparison with other secure deduplication systems. SecDep18 designs a secure

deduplication system showing that storing the chunk-level keys on the SP can reduce the overhead. To ensure the security, the chunk-level keys

are encrypted by the corresponding file-level keys. SecDep creates share keys for each file-level key with SSSS method and distribute them on

key servers. Thus, it greatly reduce the number of keys need to be managed on the key servers.

8 CONCLUSIONS AND FUTURE WORK

Secure deduplication systems become increasingly popular as they can ensure the security and privacy of outsourced data. However, the

state-of-the-art secure deduplication mechanisms cannot deal with frequent file modification problems efficiently and result in unnecessary

operational overheads. In this paper, we present Sed-Dedup, an efficient secure data deduplication system to address this issue. In Sed-Dedup, a

novel delta encoding protocol is introduced which only records the difference between two versions in a delta file. With this approach, Sed-Dedup

avoids generating largely overlapped chunks. Thus, Sed-Dedup achieves higher deduplication ratio, smaller cloud storage consumption, and

lower network traffic. Furthermore, Sed-Dedup can greatly decrease the key management overhead. To evaluate its performance, we compare

Sed-Dedup with SecDep using synthetic and real world datasets. The experimental results clearly show that Sed-Dedup can achieve superior

performance.

In our current experiments, we choose Linux kernel source code archives and mysql dump files as the real world backup system datasets

to evaluate the performance. It might not be the best option. In the future, we plan to collect real world datasets as described in the work of

Zhou et al18 and use them for evaluation. We also plan to contact cloud service providers for real backup system datasets. In addition, we plan

to further investigate the advantages and disadvantages of delta encoding techniques, and design more efficient algorithms to keep track the

difference between multiple version files.

ACKNOWLEDGMENTS

This work is supported by the National Key Research and Development Program of China under grants 2016YFB0800402 and 2016QY01W0202;

National Natural Science Foundation of China under grants U1836204, 61572221, 61433006, U1401258, and 61502185; Major Projects of the

National Social Science Foundation under grant 16ZDA092; and Guangxi High Level Innovation Team in Higher Education Institutions—Innovation

Team of ASEAN Digital Cloud Big Data Security and Mining Technology.

ORCID

Wenlong Tian https://orcid.org/0000-0003-3177-9099

REFERENCES

1. Google Drive. A file storage and synchronization service developed by Google. https://www.google.com/drive

2. Microsoft OneDrive. A file hosting service and synchronization service operated by Microsoft. https://onedrive.live.com/

3. Baidu Cloud. A cloud storage service provided by Baidu. https://yun.baidu.com/

https://orcid.org/0000-0003-3177-9099
https://orcid.org/0000-0003-3177-9099
https://www.google.com/drive
https://onedrive.live.com/
https://yun.baidu.com/

TIAN ET AL. 13 of 14

4. Meyer DT, Bolosky WJ. A study of practical deduplication. Paper presented at: Usenix Conference on File and Storage Technologies; 2012;
San Jose, CA.

5. Wallace G, Douglis F, Qian H, et al. Characteristics of backup workloads in production systems. Paper presented at: FAST'12:4–4 USENIX Association;
2012; Berkeley, CA.

6. Dropbox. A personal cloud storage service for file sharing and collaboration. http://www.dropbox.com

7. Dell EMC. An online backup service for both Windows and macOS users provided by Dell EMC. http://www.mozy.com

8. João P, Orlando PJ. A survey and classification of storage deduplication systems. ACM Comput Surv. 2014;47(1):1-30.

9. Ng WK, Wen Y, Zhu H. Private data deduplication protocols in cloud storage. In: Proceedings of the 27th Annual ACM Symposium on Applied
Computing; 2012; New York, NY.

10. Bugiel S, Nu̇rnberger S, Sadeghi A-R, Schneider T. Twin clouds: secure cloud computing with low latency. In: Communications and Multimedia Security:
12th IFIP TC 6/TC 11 International Conference, CMS 2011, Ghent, Belgium, October 19-21, 2011. Proceedings. Berlin, Germany: Springer; 2011:32-44.
Lecture Notes in Computer Science.

11. Howard R. Data encryption standard. Comput Secur. 1997;6(3):195-196.

12. Miller FP, Vandome AF, McBrewster J. Advanced Encryption Standard. Orlando, FL: Alpha Press; 2009.

13. Li J, Chen X, Li M, Li J, Lee PPC, Lou We. Secure deduplication with efficient and reliable convergent key management. IEEE Trans Parallel Distrib Syst.
2014;25(6):1615-1625.

14. Bellare M, Keelveedhi S, Ristenpart T. Message-locked encryption and secure deduplication. Paper presented at: Annual International Conference on
the Theory and Applications of Cryptographic Techniques; 2013; Athens, Greece.

15. Eastlake D 3rd, Jones P. US secure hash algorithm 1 (SHA1). RFC 3174. 2001.

16. Halevi S, Harnik D, Pinkas B, Shulman-Peleg A. Proofs of ownership in remote storage systems. In: Proceedings of the 18th ACM Conference on
Computer and Communications Security; 2011; Chicago, IL.

17. Keelveedhi S, Bellare M, Ristenpart T. DupLESS: Server-aided encryption for deduplicated storage. Paper presented at: 22nd USENIX Security
Symposium; 2013; Washington, DC.

18. Zhou Y, Feng D, Xia W, et al. SecDep: A user-aware efficient fine-grained secure deduplication scheme with multi-level key management. Paper
presented at: 2015 31st Symposium on Mass Storage Systems and Technologies (MSST); 2015; Santa Clara, CA.

19. Liu J, Asokan N, Pinkas B. Secure deduplication of encrypted data without additional independent servers. In: Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security; 2015; Denver, CO.

20. Tang H, Cui Y, Guan C, Wu J, Weng J, Ren K. Enabling ciphertext deduplication for secure cloud storage and access control. In: Proceedings of the
11th ACM on Asia Conference on Computer and Communications Security; 2016; Xi'an, China.

21. Meister D, Brinkmann A. Multi-level comparison of data deduplication in a backup scenario. In: Proceedings of SYSTOR 2009: The Israeli Experimental
Systems Conference; 2009; Haifa, Israel.

22. GIT Version Control. https://lab.github.com/docs

23. Linux Kernel Archives. https://kernel.org/

24. Hunt JJ, Vo K-P, Tichy WF. Delta algorithms: an empirical analysis. ACM Trans Softw Eng Methodol. 1998;7(2):192-214.

25. Kulkarni P, Douglis F, LaVoie JD, Tracey JM. Redundancy elimination within large collections of files. Paper presented at: USENIX Annual Technical
Conference; 2004; Boston, MA.

26. Shilane P, Wallace G, Huang M, Hsu W. Delta compressed and deduplicated storage using stream-informed locality. Paper presented at: USENIX
Workshop on Hot Topics in Storage and File Systems; 2012; Boston, MA.

27. Rabin M. Fingerprinting by Random Polynomials. Technical Report. Cambridge, MA: Center of Research in Computer Technology, Harvard University;
1981.

28. Kave E, Khuern TH. A Framework for Analyzing and Improving Content-Based Chunking Algorithms. Technical Report. Palo Alto, CA: Hewlett-Packard
Labs; 2005.

29. Kruus E, Ungureanu C, Dubnicki C. Bimodal content defined chunking for backup streams. Paper presented at: 8th USENIX Conference on File and
Storage Technologies; 2010; San Jose, CA.

30. Zhu B, Li K, Patterson H. Avoiding the disk bottleneck in the data domain deduplication file system. Paper presented at: 6th USENIX Conference on
File and Storage Technologies; 2008; San Jose, CA.

31. Xia W, Jiang H, Feng D, Hua Y. SiLo: A similarity-locality based near-exact deduplication scheme with low RAM overhead and high throughput. Paper
presented at: 2011 USENIX Annual Technical Conference; 2011; Portland, OR.

32. Lu G, Nam YJ, Du DHC. BloomStore: Bloom-filter based memory-efficient key-value store for indexing of data deduplication on flash. Paper presented
at: IEEE 28th Symposium on Mass Storage Systems and Technologies (MSST); 2012; San Diego, CA.

33. Datar M, Immorlica N, Indyk P, Mirrokni VS. Locality-sensitive hashing scheme based on p-stable distributions. In: Proceedings of the Twentieth
Annual Symposium on Computational Geometry; 2004; Brooklyn, NY.

34. Chuanshuai Y, Zhang C, Mao Y, Li F. Leap-based content defined chunking—theory and implementation. Paper presented at: 2015 31st Symposium
on Mass Storage Systems and Technologies (MSST); 2015; Santa Clara, CA.

35. Zhang Y, Jiang H, Feng D, et al. AE: An asymmetric extremum content defined chunking algorithm for fast and bandwidth-efficient data deduplication.
Paper presented at: 2015 IEEE Conference on Computer Communications (INFOCOM); 2015; Hong Kong.

36. Muthitacharoen A, Chen B, Maziéres D. A low-bandwidth network file system. ACM SIGOPS Oper Syst Rev. 2001;35(5):174-187.

37. Quinlan S, Dorward S. Awarded best paper! - Venti: A new approach to archival data storage. In: Proceedings of the 1st USENIX Conference on File
and Storage Technologies (FAST'02); 2002; Berkeley, CA.

38. Hong B, Plantenberg D, Long DDE, Sivan-Zimet M. Duplicate data elimination in a SAN file system. Paper presented at: Twenty-first IEEE Conference
on Mass Storage Systems and Technologies; 2004; College Park, MA.

http://www.dropbox.com
http://www.mozy.com
https://lab.github.com/docs
https://kernel.org/

14 of 14 TIAN ET AL.

39. Wei J, Jiang H, Zhou K, Feng D. MAD2: A scalable high-throughput exact deduplication approach for network backup services. Paper presented at:
2010 IEEE 26th Symposium on Mass Storage Systems and Technologies (MSST); 2010; Incline Village, NV.

40. Bhagwat D, Eshghi K, Long DDE, Lillibridge M. Extreme Binning: Scalable, parallel deduplication for chunk-based file backup. Paper presented at:
2009 IEEE International Symposium on Modeling, Analysis & Simulation of Computer and Telecommunication Systems; 2009; London, UK.

41. Xing Y., Li Z., Dai Y. PeerDedupe: Insights into the peer-assisted sampling deduplication. Paper presented at: 2010 IEEE Tenth International Conference
on Peer-to-Peer Computing (P2P); 2010; Delft, Netherlands.

42. Global inline deduplication for block storage and files. http://www.opendedup.org

43. Lessfs. Lessfs–open source data de-duplication. https://github.com/crass/lessfs

44. Douceur JR, Adya A, Bolosky WJ, Simon D, Theimer M. Reclaiming space from duplicate files in a serverless distributed file system. In: Proceedings
22nd International Conference on Distributed Computing Systems; 2002; Vienna, Austria.

45. Jia X, Chang E-C, Zhou J. Weak leakage-resilient client-side deduplication of encrypted data in cloud storage. In: Proceedings of the 8th ACM SIGSAC
Symposium on Information, Computer and Communications Security; 2013; Hangzhou, China.

46. Puzio P, Molva R, Onen M, Loureiro S. ClouDedup: Secure deduplication with encrypted data for cloud storage. Paper presented at: 2013 IEEE 5th
International Conference on Cloud Computing Technology and Science (CloudCom2013); 2014; Bristol, UK.

47. Agrawal NO, Kulkarni SS. Secure deduplication and data security with efficient and reliable CEKM. Int J Appl Innov Eng Manag. 2014;3:335-340.

48. Waters B. Ciphertext-policy attribute-based encryption: an expressive, efficient, and provably secure realization. Lect Notes Comput Sci.
2011;2008:321-334.

How to cite this article: Tian W, Li R, Xu C-Z, Xu Z. Sed-Dedup: An efficient secure deduplication system with data modifications.

Concurrency Computat Pract Exper. 2019;e5350. https://doi.org/10.1002/cpe.5350

http://www.opendedup.org
https://github.com/crass/lessfs
https://doi.org/10.1002/cpe.5350

	Sed-Dedup: An efficient secure deduplication system with data modifications
	Abstract
	INTRODUCTION
	PROBLEM DESCRIPTION
	Data modification and multiple versions
	Problem statement

	SED-DEDUP SYSTEM ARCHITECTURE
	System overview
	Delta encoding protocol
	Sed-Dedup-I
	Sed-Dedup-II
	Data encryption scheme

	IMPLEMENTATION DETAILS
	Chunking algorithm
	Delta encoding and decoding algorithm

	PERFORMANCE EVALUATION
	Experimental setup
	Backup time comparison for single file modification
	Backup time analysis
	File restore time comparison
	Key management overhead
	Real world dataset evaluation
	Storage space consumption
	Storage time comparison

	SECURITY DISCUSSION
	RELATED WORK
	CONCLUSIONS AND FUTURE WORK
	References

