
Journal of Parallel and Distributed Computing 146 (2020) 1–14

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Blockchain-based verification framework for data integrity in
edge-cloud storage
Dongdong Yue a, Ruixuan Li a,∗, Yan Zhang b, Wenlong Tian c, Yongfeng Huang d

a School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, China
b School of Computing, Engineering and Mathematics, Western Sydney University, Sydney, Australia
c School of Computer Science and Technology, University of South China, Hengyang, China
d Department Of Electronic Engineering, Tsinghua University, Beijing 100084, China

a r t i c l e i n f o

Article history:
Received 1 December 2019
Received in revised form 8 April 2020
Accepted 6 June 2020
Available online 22 June 2020

Keywords:
Blockchain
Edge-cloud storage
Data integrity verification
Merkle trees
Sampling

a b s t r a c t

With the popularity of the Internet of Things (IoT), data integrity verification in the edge cloud storage
attracts attentions from many researchers. Due to the over dependence of the Third Party Auditor (TPA)
and the dynamical nature of the IoT data, the traditional data integrity verification framework for
cloud storage can hardly work. To satisfy the characteristics of the IoT and avoid the over dependence
of the TPA, we propose a blockchain-based framework without TPA for data integrity verification in a
decentralized edge-cloud storage (ECS) scenario in this paper. In our framework, we employ the Merkle
tree with random challenging numbers for data integrity verification and analyze different Merkle
tree structures to optimize the system performance. To solve the problem of limited resources and
high real-time requirements, we further propose sampling verification and develop rational sampling
strategies to make sampling verification more effective. The overhead and precision of the verification
in ECS are studied by an optimal sample size strategy. Finally, a prototype system is implemented based
on our framework. We conduct a series of experiments to evaluate the effectiveness of the proposed
schemes. The experimental results show that our schemes can effectively improve the performance of
data integrity verification.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Due to the rapid growth of the Internet of Things (IoT), how
to transfer the data from resource-constrained IoT devices to
the remote cloud becomes an urgent problem [15]. To solve
this problem, the centralized cloud-assisted Internet of Things
(CoT) model is changed into the decentralized edge-cloud storage
(ECS) model [22]. However, both edge nodes and cloud are not
completely secure. In other words, the data owners will lose
control of these data when they are collected and uploaded to
the cloud. Meanwhile, terminal devices in the IoT have limited
resources and computing power, while the traditional methods
of data integrity do not consider the limitations in the IoT sce-
narios. Therefore, how to verify data integrity to conquer these
limitations under the decentralized ECS model is critical.

The data storage and integrity verification framework under
traditional cloud storage is shown as Fig. 1. In this framework,
there are three objects: Clients, Cloud Storage Servers (CSS), and

∗ Corresponding author.
E-mail addresses: ydd@hust.edu.cn (D. Yue), rxli@hust.edu.cn (R. Li),

Yan.Zhang@westernsydney.edu.au (Y. Zhang), wenlongtian@usc.edu.cn
(W. Tian), yfhuang@mail.tsinghua.edu.cn (Y. Huang).

Third-Party Auditor (TPA) [20]. The client stores his data on the
CSS and sends relevant information to the TPA to verify the in-
tegrity of the data. When data integrity verification is performed,
the CSS will submit the proofs to the TPA. Finally, the TPA verifies
the integrity of the cloud-stored data based on these proofs and
the user’s previously transmitted useful information.

In this verification mechanism, the TPA is introduced to carry
out the verification between the client and CSS. However, the TPA
is composed of one or several organizations and is to some extent
a centralized organization. If CSS colludes with TPA maliciously,
the result of data integrity verification may not be credible. If
the TPA fails, the overall verification work cannot be carried out.
In addition, the emergence of TPA for data process increasing
the risk of threats from hackers [1]. Therefore, the traditional
verification mechanism exists a series of security issues.

Moreover, with the rapid growth of the number of IoT devices,
it is difficult to transmit a huge amount of data generated by the
IoT devices to the cloud. It is because the location and power of
the IoT devices limit the data travel efficiency and the data com-
putation pressure derived from the cloud processing capability.
To mitigate the pressure of centralized cloud servers and reduce
the cost of data communications, the centralized CoT model is
changing to the decentralized ECS model. ECS model comple-
ments the traditional CoT mode in terms of high scalability, low

https://doi.org/10.1016/j.jpdc.2020.06.007
0743-7315/© 2020 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jpdc.2020.06.007
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2020.06.007&domain=pdf
mailto:ydd@hust.edu.cn
mailto:rxli@hust.edu.cn
mailto:Yan.Zhang@westernsydney.edu.au
mailto:wenlongtian@usc.edu.cn
mailto:yfhuang@mail.tsinghua.edu.cn
https://doi.org/10.1016/j.jpdc.2020.06.007

2 D. Yue, R. Li, Y. Zhang et al. / Journal of Parallel and Distributed Computing 146 (2020) 1–14

Fig. 1. Data storage and integrity verification on the cloud under traditional
architecture.

latency, location awareness, and instant local client computing
power. In the ECS model, both cloud and local edge devices can
provide data storage and computing services.

Blockchain is an open, distributed ledger that can record trans-
actions between two parties efficiently and in a verifiable and
permanent way [13]. The distributed nature of blockchain makes
it an inevitable trend to apply blockchain to data integrity ver-
ification in the ECS model. The TPA was removed and replaced
by introducing the blockchain technology, which makes the data
integrity verification work more open, transparent and auditable.
As the blockchain is a decentralized structure, multiple nodes
jointly maintain the operation of the blockchain. Thus, there
is no single point of failure. At the same time, the records of
blockchain are determined by all the nodes in the blockchain,
which makes the records that exist on the blockchain be more
secure and credible. Therefore, applying blockchain technology to
data integrity verification in the ECS model is feasible.

In most of the edge-cloud storage scenarios of IoT systems,
the resources of the edge nodes are limited, and the real-time
requirements of systems are very high. In these cases, it is difficult
to verify the integrity of the whole data in the IoT systems.
The methods of verifying data integrity by using a segment of
the original data in place of verifying the whole data have been
proposed in Sia [19]. Sia is a decentralized cloud storage platform
that incorporates blockchain for data integrity verification. The
storage space in Sia is idle disk space shared by hosts. Hosts prove
their storage integrity by providing a segment of the original
data and a list of hashes from the data Merkle tree. However, Sia
does not provide how to select segments of the original data to
verify, nor consider the size of the selected data. Therefore, how
to design rational data integrity verification schemes for ECS is
still an unsolved problem.

In this paper, we firstly propose a general data integrity ver-
ification framework by utilizing the blockchain technology into
ECS to solve above issues. Then, we employ the Merkle tree for
data verification under our proposed framework and analyze the
performance of the Merkle tree with different structures. We
further introduce a sampling strategy to select data shards for
validation. To the best of our knowledge, we are the first to
employ blockchain to solve data integrity verification in the ECS
model. The main contributions of this paper are summarized as
follows.

• We propose a general blockchain-based data integrity verifi-
cation framework for decentralized edge-cloud storage. This
framework mainly focuses on the problem of incredibility in
traditional verification mechanisms and is more suitable for
the ECS model.

• We present a sampling strategy to solve the problem of
limited resources and high real-time requirements. Based on
the sampling, we propose an optimum sample size to find a
tradeoff between verification overhead and precision.

• We implement a prototype system based on the proposed
framework and conduct extensive experiments to evaluate
the performance of the proposed framework in the sys-
tem. Experimental results demonstrate the feasibility of the
proposed framework and validate our theoretical analysis.

The rest of this paper is organized as follows. In Section 2,
we discuss the related work from three aspects. In Section 3, we
introduce our system framework for data integrity verification.
In Section 4, we present the verification mechanisms. The design
of the system and the implementation of our framework are
introduced in Section 5. Experimental studies are presented in
Section 6, and the performance and security analysis are dis-
cussed in Section 7. Finally, Section 8 concludes the paper with
some remarks.

2. Related work

In this section, we briefly outline data integrity verification
techniques in traditional cloud storage, and introduce the related
research work on edge storage and blockchain.

2.1. Edge storage and edge computing

With the development of IoT, billions of sensors are connected
to the Internet. In this situation, traditional cloud computing
models are not fully suitable because sensors generate too much
data which may cause server network congestion. As a result,
edge computing is proposed to solve this problem. However,
edge computing exists problems of restricted computation, lim-
ited storage, and unstable network. Therefore, Xing et al. [22]
propose a distributed multi-level storage (DMLS) model with a
multi-factor least frequently used (mLFU) algorithm to solve the
problem.

In the scenario of the IoT, dealers need to provide real-time
information and feedback to end-users based on a large amount
of data generated by IoT devices. Therefore, how to effectively
extract useful features from these large amounts of heteroge-
neous data is a problem worth studying. Although cloud comput-
ing and edge computing have made parallel progress in solving
some problems in data analysis, they have their own advantages
and limitations. To solve this problem, Sharma et al. [18] pro-
pose a new framework for collaborative processing between edge
and cloud computing/processing platforms by integrating their
strengths.

Data analysis based on the data generated by IoT devices
to perform near-real-time decision making is another problem
worth studying. When performing near-real-time decisions at the
edge, we need historical data to perform an accurate analysis.
However, with limited edge storage capacity, it is a challenge to
balance the amount of data stored with the quality of near-real-
time decisions. To solve this problem, a three-layer architecture
model for edge data storage management is proposed by Lujic
et al. [12], which includes an adaptive algorithm that dynamically
balances the high prediction accuracy with the minimum amount
of data.

2.2. Data integrity verification in cloud storage systems

There are mainly two types of traditional data integrity verifi-
cation mechanisms. One is Provable Data Possession (PDP); the
other is Proofs of Retrievability (POR). PDP can quickly verify

D. Yue, R. Li, Y. Zhang et al. / Journal of Parallel and Distributed Computing 146 (2020) 1–14 3

whether the data stored on the cloud is intact. POR can not only
verify the integrity of remote data, but also recover data with a
certain probability when the data are damaged [10]. The basic
PDP authentication method is proposed by Deswarte et al. [7].
Before the user uploads his own data, he uses the Hash-based
Message Authentication Code (HMAC) to calculate the Message
Authentication Code (MAC) value of the data and saves it at
local. When verifying these data, the user first downloads the
data stored on the cloud, then calculates the MAC value of the
downloaded file, and compares it with the MAC value previously
saved to determine whether the data integrity is guaranteed.

Although the above PDP mechanism is simple, directly down-
loading complete data requires a lot of resources and may lead
to leakage of data privacy. To solve the problem, Sebe et al. [16]
propose a block-based scheme to reduce the computational over-
head. Due to the deterministic verification method, the verifica-
tion result may not be completely correct. Then, Ateniese et al. [2]
propose using probabilistic strategies to complete the integrity
verification. They use the homomorphic properties of RSA signa-
ture mechanism, gathered evidence in a very small value, which
greatly reduce the communication overhead. Subsequently, Curt-
mola et al. [6] implement the data integrity verification mecha-
nism in the case of multiple copies, but it does not support the
dynamic data operation. Ateniese et al. [3] consider the dynamic
data operation firstly. They present a simple modified mechanism
of the PDP based on their previous work [2], making it support
dynamic data manipulation.

Although the PDP authentication mechanism can efficiently
verify the integrity of data, it cannot recover invalid data as POR.
Shacham et al. [17] use the BLS short message signature mech-
anism to construct homomorphic verification tags, which can
reduce the communication overhead for verification. However, it
is difficult to implement. Wang et al. [21] propose using the linear
features of the error correction code to support partial dynamic
operations, but it could not support the dynamic insertion of
data. Chen et al. [5] optimize Wang’s mechanism and uses the
Reed-Solomon erasure code technique to recover the failed data,
which can improve the recovery efficiency, but increases the
computational cost.

In general, existing integrity verification schemes in traditional
cloud storage system can hardly be applied into ECS scenario. It
is because the data is distributedly stored in the edge nodes and
cloud, which is different from the centralization property under
traditional cloud storage scenario. Thus, it is worth to studying
the data integrity verification in ECS model as the ECS becomes
an important infrastructure of IoT.

2.3. Blockchain based data integrity verification

The problems of incomplete trust caused by traditional data
integrity verification make it an inevitable trend to integrate
blockchain technology into data integrity verification of cloud
storage. Gaetani et al. [8] devise a two-layer blockchain to solve
the data integrity problem in cloud computing environment.
More specifically, the first-layer aims at quickly storing evidence
of every operation carried out on a distributed database. Thus, the
first-layer adopts a lightweight consensus protocol to assure low
latency and high throughput. The second-layer blockchain stores
evidence of the database operations logged by the first-layer. To
provide strong data integrity guarantees, the second-layer adopts
prove-of-work (PoW) as its’ consensus protocol. However, their
paper focuses on how to prevent tampering of data recorded on
the blockchain and does not cover how to use the blockchain to
complete the verification of data integrity in cloud storage.

Although Sia [19] involved the Merkle tree in the smart
contract in 2014 to complete data integrity verification in peer-
to-peer (P2P) storage. However, there is no more detailed descrip-
tion of the data integrity verification scheme in their paper. At the
same time, their work does not take into account the problem
of verification cost and accuracy. Our paper focuses on how to
balance the verification cost and accuracy and then proposes
a sampling verification scheme to achieve the best verification
performance.

Liu et al. [11] propose a blockchain-based framework for data
integrity service. Without relying on TPA in this framework, data
owners and data consumers can be provided with more reliable
data integrity verification. In order to ensure the security of the
whole data set when data owner application (DOA) shares data
with the data consumer application (DCA), Liu et al. adopt sam-
pling validation when DCA conducts data integrity verification.
However, they did not consider that when DOA performs data
integrity verification, CSS directly returns complete data blocks,
which will also cause data set security problems of DOA if there
is an attack. We believe that both DCA and DOA should adopt
sampling verification to protect the security of the whole data set
when they propose data integrity verification. Therefore, our pa-
per focuses on how to design an appropriate sampling verification
scheme to optimize the data integrity verification performance in
edge-cloud storage scenario.

Blockchain technology is not only applied in data integrity
verification but also in other scenarios. Nosouhi et al. [14] utilize
the unique features of the blockchain technology to design a de-
centralized scheme for location proof generation and verification.
Their work addresses the issue that dishonest users may submit
fake location information to illegally access a service or obtain a
benefit in location-sensitive applications. In the cloud data shar-
ing scenario, a user will generate a new signature for the modified
file after modification. If two or more users modify the same file
at the same time, a signature conflict will occur. To addresses this
issue, Huang et al. [9] propose a new mechanism for data storing
based on blockchain to realize signature uniqueness.

3. System framework

3.1. System structure

The structure of the ECS model in our framework is shown
as Fig. 2. It is a four-layer network architecture. The top layer is
a remote cloud layer, which consists of cloud service providers.
Cloud is used to store the main information in IoT, such as users’
personal information, transaction information and so on. Since
this type of information does not need to provide a high real-time
service and is not often changed, it can be stored on the cloud.
Moreover, this type of information will increase linearly with the
accumulation of time and the increase in the number of users.
Therefore, the amount of these data will be so large that they are
only suitable to store on the cloud.

The second-layer is an edge network layer, which consists
of several base stations. It is used to provide near-field storage
services for IoT terminal devices. The communications between
the first layer and the second layer are based on the route. The
third-layer is the IoT terminal devices layer, which consists of a
variety of IoT devices, such as mobile phones, personal comput-
ers, household devices and so on. IoT devices will communicate
with their nearest base stations to get low latency of data storage
service. Some regional information, such as regional news, is
sent by the cloud to the regional base station, and then sent to
the nearby IoT terminal devices by the base station. Information
sharing can also be uploaded by one terminal device to the base
station, and then shared by the base station to another terminal.

4 D. Yue, R. Li, Y. Zhang et al. / Journal of Parallel and Distributed Computing 146 (2020) 1–14

Fig. 2. The structure of edge-cloud storage model for IoT in our framework.
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

In addition, data can also be transferred directly between two IoT
terminal devices, as long as the distance between them meets the
requirements. This communication scheme is similar to Peer-to-
Peer (P2P) model, a large scale distributed network, where every
peer is capable of being both a client and a server in this model.

The fourth-layer is the blockchain (BC) layer. All nodes in our
system, including cloud, edge nodes, and IoT device nodes, will
join the blockchain network and participate in the maintenance
of blockchain. Nevertheless, different nodes play distinct roles
in the blockchain. Cloud and edge nodes can be the consen-
sus nodes of the blockchain since the consensus of blockchain
requires the participating nodes with strong computing and stor-
age capabilities. They participate in the consensus calculation of
blockchain so that blockchain maintains consistency in the whole
network. These consensus nodes are highlighted in yellow in the
blockchain network layer of Fig. 2. IoT terminal devices, which has
limited computing and storage resources, can only be the user
nodes of BC. They can send a transaction to the blockchain to
verify data integrity and pay to the blockchain. These user nodes
are highlighted in blue in the blockchain network layer of Fig. 2.
Finally, those legally executed transactions are recorded on the
blockchain.

There are two types of roles associated with data in the IoT
terminal devices layer: data owner (DA) and data consumer (DC).
The IoT devices that produce the data are data owners, and others
are data consumers. The data owners will upload data to the
edge network for storage and sharing. The data consumers do
not generate data by themselves but consume data shared by
DA, such as reading and forwarding. The requirements for data
integrity verification come from DA and DC. DA needs to know
whether the data uploaded to the edge network or cloud are still
intact, so the integrity of the data needs to be verified. DC needs
to know whether the data it consumes are consistent with the
data shared by DA, so it also needs to verify the integrity of the
data. For simplicity, we will unify DA and DC as clients in the
following description.

3.2. Verification model

In our schema, we present a two-stage framework for
blockchain-based data integrity verification in the ECS model. The

Fig. 3. The workflow of client uploading data to edge-cloud storage.

Fig. 4. The workflow of verifying data integrity in edge-cloud storage with
blockchain.

first stage is the preparation stage, and the second stage is the
verification stage. To facilitate understanding of the interaction
process, we simplify our four-layer network structure to a three-
part architecture. As shown in Figs. 3 and 4, there are three
entities in our simplified three-part architecture: ECS, Clients, and
BC. The ECS part is synthesized from the remote cloud and edge
network. Clients are the IoT terminal devices layer in Fig. 2, which
include DA and DC. Since clients can upload their own data and
download data from ECS, data integrity verification requests are
mainly from clients. Blockchain is introduced for data integrity
verification between clients and ECS.

3.2.1. Preparation stage
Fig. 3 shows the preparation stage of our framework. This

stage is used to process clients’ data and then upload them to ECS.
As shown in Fig. 3, there are five steps in the preparation stage. In
the first step, the client slices its data into several shards and uses
these shards to construct a hash Merkle tree. In the second step,
the client and ECS nodes agree on the hash Merkle trees. In the
third step, the client stores the root of this hash tree denoted as
root1 on the blockchain. In the fourth step, the client uploads its
data and public Merkle trees to ECS. In the fifth step, ECS returns
the address in which the client’s data are stored to the client.

3.2.2. Verification stage
Fig. 4 shows the verification stage of our framework. This

stage is to process data integrity verification requests proposed
by the clients. As shown in Fig. 4, there are also five steps in the
verification phase. In the first step, the client sends a challenge
number si to ECS node, which selects shard i to verify. In the
second step, ECS uses a hash function to calculate a hash digest
i′, according to si and shard i. In the third step, ECS sends digest i′
and the corresponding auxiliary information to BC. As for what
the auxiliary information is, we give a specific explanation in

D. Yue, R. Li, Y. Zhang et al. / Journal of Parallel and Distributed Computing 146 (2020) 1–14 5

Section 4.1.1. In the fourth step, the smart contract on the
blockchain calculates a new hash root denoted as root2, and
compare root1 with root2. If they are equal, the data integrity
is then guaranteed; otherwise, the data integrity is corrupted. In
the last step, the BC returns the verification result to the client.

In this framework, clients place the root of the Merkle trees
on the blockchain before uploading the data. Due to the non-
tamperability property of blockchain, any client or ECS node
cannot modify the root stored on the blockchain, which makes
integrity verification more credible. At the same time, due to the
distributed nature of the blockchain, we assume that the data
on the blockchain will not be damaged. Hence, data integrity
verification is more reliable.

4. Verification mechanism

In this section, we firstly introduce the structure of Merkle
trees, which are employed to assist data integrity verification. The
performance of different structures of Merkle trees are analyzed
in terms of computation and communication overhead. Secondly,
we illustrate the sampling strategies for data integrity verifica-
tion in detail. Then, we propose the method for calculating the
best sample size of data integrity sampling verification. Finally,
we suggest five strategies to determine the order in which the
samples are verified.

4.1. Structure of the Merkle tree

The advantage of using Merkle trees to verify the data integrity
is that the entire data file can be verified by a small segment
of the entire data shards, which is relatively small regardless of
the size of the original file. The structure of the Merkle tree is
shown as Fig. 5. There are two parts in the Merkle Tree, public
and private. Each arrow in this figure represents a hash function
execution. The bottom layer of the private part consists of shards
and random challenging numbers. Shards are obtained by slicing
the clients’ original data. Each shard Shardi is assigned with a
random challenge number si. The second layer of the private part
contains digests. Each Digesti is the result of hash (shardi + si).
Leafmn in the public part of the Merkle tree is the nth leaf node
of the mth layer. The top of the tree is the hash root of this Merkle
tree, denoted as R.

The public part of the Merkle tree needs to be uploaded to the
ECS node to assist in validating each data shard. The data shard
shardi in the private part will also be uploaded to the ECS node.
As for the random challenge number si, it can only be sent to the
ECS node when the client needs to verify the corresponding data
shard. Therefore, si is locally saved by the client. Since it is a tree
structure, we can study the Merkle tree with different branches.
This section analyzes different structures of Merkle trees, then
discusses the communication and computation overhead of the
system under different structures.

4.1.1. Auxiliary information
In the verification stage of Section 3.2.2, we mentioned that

ECS needs to send auxiliary information to BC. Here, we will ex-
plain what auxiliary information is through a concrete example.
We assume the original data are split into 12 shards, and the
number of branches of our Merkle tree is four. Then, we construct
a hash Merkle tree as shown in Fig. 6. We use D to represent each
node in the Merkle tree. Assuming that we want to verify shard0,
which is highlighted in yellow in Fig. 6, we will hash shard0 with
s0 to get D0. Then, we need D1, D2, D3 to get D12. After we get
D12, D13 and D14 are needed to get D15, the root of the Merkle
tree. It means, if we want to get the root of the Merkle tree
from shard0, we need the help from D1, D2, D3, D13, and D14.
Therefore, these red boxes in Fig. 6 are the auxiliary information
of yellow boxes.

Fig. 5. The structure of Multi-Branch Tree.

4.1.2. Communication cost
Since the public tree needs to be passed from the client to

the ECS node, the size of the public tree is proportional to the
communication cost. Assuming that the output degree of each
node of the tree is m(m ≥ 2), and the total number of leaf nodes,
namely the total number of shards, is n, then the total number of
nodes of the public tree is:

sum(m) = m0
+ m1

+ m2
+ · · · + mlogm n

= m0
+ m1

+ m2
+ · · · + n.

(1)

To explore the relationship between m and sum(m), we as-
sume that the numbers of branches of the two types of Merkle
trees are m1 and m2 respectively, which are satisfied with m1 =

(m2)2.
When m1 = (m2)2 and n is fixed, the statement that

sum(m1) < sum(m2) is true. Hence, we can make the conclu-
sion that when m (the number of branches of the Merkle tree)
increases, the size of public tree decreases, the communication
cost decreases.

4.1.3. Computational cost
We measure the computational cost by calculating the delay

in completing the computation, because the computational cost
is proportional to the computational latency.

Verify shards. The latency of verifying shards = calculation
times × time cost of each calculation, and the calculation times
of each shard is F1(m) = logm n. When n is fixed, F1(m) decreases
as m increases. Thus, the latency of verifying shards decreases as
m increases.

Generate Merkle trees. The latency of generating Merkle trees
is proportional to the size of public tree. From previous descrip-
tion in Section 4.1.2, we know that the total number of nodes
of the public tree decreases as m increases. Thus, the latency of
generating Merkle trees decreases as m increases.

Generate auxiliary path. The latency of generating the auxil-
iary path is proportional to the size of the auxiliary path. The size
of the auxiliary path is F2(m).

F2(m) = (m − 1) logm n = ln n(
m

lnm
−

1
lnm

). (2)

f 2(m) = (
m

lnm
−

1
lnm

). (3)

f 2′(m) =
1

lnm
−

m 1
m

(lnm)2
+

1
m

(lnm)2

=
m lnm + 1 − m

(lnm)2m
> 0. (4)

6 D. Yue, R. Li, Y. Zhang et al. / Journal of Parallel and Distributed Computing 146 (2020) 1–14

Fig. 6. The illustrate for auxiliary information in Multi-Branch Merkle Tree. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

F (2) is equal to f (2) times a constant term, thus, they have
the same monotonicity. f 2′(m) is the derivative of f 2(m). Since
f 2′(m) > 0, F2(m) increases as m increases. Whereas, each
element in the auxiliary path is a hash string, so that it takes up
little memory overhead. It is also very fast to get the auxiliary
path through the Merkle trees (as shown in Fig. 11 in Section 6.1).
The cost of calculation is small. Therefore, the additional commu-
nication and computation costs of the auxiliary path caused by
the multi-branch Merkle trees structure are negligible.

4.2. Sampling strategies

Due to the limitation of resources or high real-time require-
ments in some scenarios of IoT, it is not possible to verify all data
shards to confirm the data integrity. In these cases, we need to
choose a part of shards to be verified. In our paper, selecting a
portion of the shards from the overall data shards for validation
is regarded as a sampling problem. We choose random sampling
strategy because the difference between each data shard is very
small. Then, we adopt repeated sampling (sampling with replace-
ment) to ensure that the probability of each shard to be chosen
is the same, which guarantees the fairness.

We adopt two random sampling strategies: simple random
sampling and stratified sampling. The descriptions of these two
strategies are as follows.

Simple random sampling. Simple random sampling is first
adopted at the beginning of the operation of the system, because
we know little about ECS nodes at this time. We set an initial
credit value for each ECS node at first. At each validation, if the
ECS node keeps the complete data, its credit value increases one.
Otherwise, its credit value reduces one.

Stratified sampling. After a period of simple random sam-
pling, we get the credit values of these ECS nodes. These ECS
nodes are layered based on their credit values. Then, we perform
random sampling over each layer. For example, assuming these
ECS nodes are divided into three layers, denoted as R1, R2, R3
respectively. The sample sizes for each layer are N1,N2,N3 re-
spectively, and the sample size of sampling is N . We need to
ensure N = N1 + N2 + N3. The sample size of each layer is
proportional to the credit value of the corresponding layer.

These two sampling strategies are performed alternately. At
the beginning of the system, simple random sampling will be
performed to get credit value of each ECS node. Then, according
to these credit values, we can divide ECS nodes into several layers,
and perform stratified sampling. After the system running for

a while, we will rerun the simple random sampling to update
the ECS nodes at each layer, then continue to perform stratified
sampling.

4.3. Sample size

The total number of validated shards is called sample size. The
sample size will affect the cost and precision of verification. For
the verification cost, the larger the sample size is, the more pieces
of shards need to be verified, and the higher the verification cost
is. That is the verification cost is positively correlated with the
sample size. For the verification precision, the larger the sample
size, the more representative it is of the overall data, and the
higher the verification precision is. It means that the verification
precision is also positively correlated with the sample size. The
cost and precision of verification in our system are explained in
detail as follows.

Verification cost. A simple linear function can be used to
express the relationship between sample size N and verification
cost C:

C = c0 + c1N, (5)

where c0 > 0, c1 > 0. c0 represents the basic cost, and c1
represents the influence degree of sample size. The values of
c0 and c1 are not direct interest, but used to establish a linear
relationship between C and N .

Verification precision. Suppose the total number of data
shards is n, where there are f invalid (lost or tampered) shards,
and the sample size of sampling is N . The variable V is used to
represent the number of invalid shards detected in the sampled
data, then the probability PV represents at least one invalid shard
that has been detected, which is denoted as follows.
PV = P {V ≥ 1} = 1 − P {V = 0}

= 1 −
n − f
n

∗
n − f
n

∗ · · · ∗
n − f
n

N

= 1 − (
n − f
n

)N .

(6)

Since we use repeated sampling, the probability that a shard
selected randomly is valid is n−f

n . Thus, when the sample size is
N , the probability that no invalid shard is detected is

P {V = 0} =
n − f
n

∗
n − f
n

∗ · · · ∗
n − f
n

N

.

D. Yue, R. Li, Y. Zhang et al. / Journal of Parallel and Distributed Computing 146 (2020) 1–14 7

The ideal situation is to spend as little verification cost as
possible and obtain as high verification precision as possible.
However, the verification cost and the verification precision are
in contradictory relationship. What we need to do is finding an
optimal sample size to balance the contradiction between the
verification cost and the verification precision. Therefore, we pro-
pose a Loss Function L(N) to comprehensively consider the impact
of sample size on verification cost and verification precision.

The Loss Function L(N) should be able to correctly represent
the contradictory relationship between the verification cost and
the verification precision. In addition, the relationship among the
loss, the verification cost and the verification precision reflected
by the loss function should conform to the actual situation. That
is, the higher the cost is, the greater the loss will be, i.e. the loss is
proportional to the cost. The higher the precision is, the smaller
the loss will be, i.e. loss and precision are inversely proportional.
Therefore, we propose two types of Loss Functions L1(N) and
L2(N). They are shown in Eqs. (7) and (11).

1. Loss Function in Addition Form. L1(N)

L1(N) = C + λ
1
PV

= c0 + c1N + λ(
1

1 − (n−f
n)N

),
(7)

where N ∈ (0, n], c1 > 0, c0 > 0. λ balances the impor-
tance between verification cost and verification precision.
In practice, if we have a different emphasis on validation
precision and validation overhead, we can change the value
of λ. In order to simplify the analysis, we set λ = 1 in our
paper. As c0, c1, n, f can be obtained as constants, L1(N) can
be regarded as a function of variable N . Our goal is to find
an optimal N to make L1(N) minimum, we could get the
following theorem to calculate the optimal N .
Theorem 1. When N ∈ (0, n], there exists the opti-
mal N = N2 to make L1(N) minimum, where N2 =

loga
(2c1−lna)−

√
lna2−4c1 lna

2c1
.

Proof 1. To verify the theorem, we have the following
proof.

lim
N→0

L1(N) = +∞, lim
N→n

L1(N) = c0 + c1n + 1. (8)

Variable substitution: a =
n−f
n , x = aN , then a ∈ (0, 1), x ∈

(0, 1).

L1(x) = c0 + c1logax +
1

1 − x
. (9)

The derivative of L1(x) is L′

1(x) =
c1
xlna +

1
(1−x)2

, when L′

1(x) =

0, then c1x2+(lna−2c1)x+c1 = 0. The roots of this equation
are

x1 =
(2c1 − lna) +

√
lna2 − 4c1lna

2c1
,

x2 =
(2c1 − lna) −

√
lna2 − 4c1lna

2c1
.

(10)

Easy to prove that x1 ∈ (1, ∞), x2 ∈ (0, 1), corresponding
N1 < 0,N2 > 0, then the valid data domain is N ∈

(0,N2] ∪ (N2, n]. When N ∈ (0,N2], L′

1(N) < 0. When
N ∈ (N2, n], L′

1(N) > 0. So, L1(N) will be minimum when

N = N2, and N2 = loga
(2c1−lna)−

√
lna2−4c1 lna

2c1
, therefore the

best sample size is N2.
2. Loss Function in Division Form. L2(N)

L2(N) =
C
PV

=
c0 + c1N

1 − (n−f
n)N

. (11)

The variables description for Eq. (11) is the same as Eq. (7).
Theorem 2. When N ∈ (0, n], there exists the optimal N to
make L2(N) minimum.
Proof 2. To valid the theorem, we have the following
proof.

lim
N→0

L2(N) = +∞, lim
N→n

L2(N) = c0 + c1n. (12)

Variable substitution: a =
n−f
n , x = aN , then a ∈ (0, 1), x ∈

(0, 1).

L2(x) =
c0 + c1logax

1 − x
. (13)

The first derivative of L(x) is L′

2(x) =

c1
xlna (1−x)
(1−x)2

+
c0+c1 logax

(1−x)2
.

When x > 0, the second derivative L′′

2(x) > 0, which means
that the first derivative L′

2(x) is an increasing function.

lim
x→0

L′

2(x) = −∞, lim
x→1

L′

2(x) = +∞. (14)

There must exist x1 that makes L′

2(x1) = 0. Thus, L(N) will
be minimum when N = N1, and N1 = logax1. Therefore,
the best sample size is N1.

4.4. Order of verification

After getting the samples, appropriate strategies can be used
to determine the order, in which the samples are verified. We
abstract this issue as follows. Given the sample size N , assuming
there exists an invalid shard, denoted as i, to discover invalid
shard i, which kind of validation strategies should be adopted
so that we can verify the least amount of shards, namely the
verification cost is minimal.

To facilitate the description, we use an array to represent
the sample shards. The index of shards is from 0 to N − 1,
while the invalid shard’s index is i, and the verification cost (the
number of the shards that need to be verified before verifying the
invalid shard) is m. Then, we adopt the following five verification
mechanisms.

1. Sequential Verification — Start with the first shard and
validate each shard forwards in order until the invalid
shard i is validated.

2. Block Verification — Slice all shards in the sample equally
to several blocks, then verify the kth shard in each block in
order in the kth round.

3. Exponential Verification — The verification starts from the
first shard (index marked as c) and the position of the next
verified shard is equal to c + 2i (where i = 0, 1, 2, 3, . . . ,
log2N). If the index is out of range and the invalid shard
i still has not been verified, then the index verification is
performed again from the foremost one of the unverified
shards until the invalid shard i is found.

4. Binary Verification — Verify the middle shard of the array
each round. If the shard is not the invalid shard, first enter
the front subarray segmented by the current validated
shard recursively, then continue performing the same val-
idation on the back subarray recursively until the invalid
shard i is verified.

5. Fibonacci Verification — First, verifying the first three shards
in sequence. Starting from the fourth shard, the index of
each shard to be verified are the sum of the index of the
previous two shards (As the index of the first shard is 0,
so starting from the second shard to execute Fibonacci). If
the index is out of range and the invalid shard i has not
yet been verified, then Fibonacci verification is performed
again on the foremost one of the unverified shards. At this
time, the previous one shard will be used for help doing
Fibonacci calculations.

8 D. Yue, R. Li, Y. Zhang et al. / Journal of Parallel and Distributed Computing 146 (2020) 1–14

Fig. 7. The implementation of data integrity verification framework.

These above five verification mechanisms are traditional algo-
rithms, but they are also applicable in our scenario.

5. System design and implementation

In this section, we introduce the implementation of data in-
tegrity verification framework, and the detailed design of the
smart contracts and the major functions in the system.

5.1. Framework implementation

Fig. 7 shows the implementation of the data integrity veri-
fication framework. The blockchain system is implemented by
a private Ethereum as Ethereum is a quite mature blockchain
platform that supports smart contracts. The client is emulated
through the web browser. By supporting data uploading, down-
loading, sharing, and viewing, the web browser can act as DA
and DC. Since the implementation of a real-world edge-cloud
storage integrated IoT is quite complex, we adopt the Inter-
Planetary File System (IPFS) to simulate ECS. As a distributed P2P
File System, IPFS will speed up the file retrieving process. The
specific configuration of the experimental environment is: 8 GB
RAM, 8 core processor, 500G hard disk, and the system is Ubuntu
16.04LTS. The programming language are Node.js and Solidity.
The hash function used to calculate Digesti is SHA256.

This paper focuses on how to select a part of data shards
for data integrity verification and guarantee high performance.
We just use blockchain as a technology to assist verification
and choose private Ethereum as our blockchain platform. As for
the incentive mechanism and throughput, they are the research
issues of blockchain itself, which deserve further study. Thus, we
do not discuss them in our paper. A specific system workflow is
shown in Fig. 8. The smart contract is deployed on the blockchain.
We use a two-way arrow to connect the smart contract and the
blockchain. A more detailed introduction to IPFS and Ethereum
are as follows.

IPFS. Inter-Planetary File System (IPFS) [4] is a global, dis-
tributed P2P file system, which is an attempt to share files in an
HTTP manner. According to the data communication mode in our
four-layer architecture described in Section 3.2, we can adopt the
P2P file system to simulate ECS.

Ethereum. The representative of blockchain 2.0 is Ethereum.
Ethereum provides three types of network: public, test and
private. Ethereum public network is a real global network that
participators need money to deploy a smart contract on it.
Ethereum test network is a global test network that participators
do not need money to deploy a smart contract on it. Since
Ethereum private network is a private network built by individual
and does not need money to deploy a smart contract on it, it is
suitable for developing a test smart contract.

Fig. 8. The workflow of data integrity verification framework.

The preparation stage is from step 1 to step 4. In this stage,
data owners need to do some preparatory works. The corre-
sponding description of each step number in Fig. 8 is shown as
follows:

step 1: Data owners deploy storage contract, compute con-
tract, and compare contract on the Ethereum.

step 2: Data owners slice the data firstly and get multiple data
shards. Then, data owners generate the Merkle tree and calculate
root1 according to these shards. Finally, data owners upload file
shards and root1 to the IPFS.

step 3: IPFS returns root1 IPFS address and data shards IPFS
addresses to data owners.

step 4: Data owners store root1 on storage contract and store
data shards IPFS addresses by themselves. If sharing, the IPFS
address of the data shard will be sent to DC by DA.

The verification stage is from step 5 to 8. In this stage, as long
as the client has the IPFS address of the data shards, the data
integrity can be verified. The corresponding description of each
step number is shown as follows:

step 5: Clients send data shards IPFS address to IPFS.
step 6: IPFS returns corresponding data shards and auxiliary

information to the client.
step 7: Clients send data shards and auxiliary information to

BC, then root2 is calculated by computing contract according to
this information.

step 8: BC compares root1 and root2 by comparing contract,
and returns the result to clients.

Through the above two stages, the work of data storage and
integrity verification has been completed.

5.2. Smart contract design

Since the implementation of the smart contract requires the
consumption of gas, the design of the smart contracts should be
as short as possible. There are two types of smart contracts in our
system, which are described as follows:

1. Storage contract. In our system, we denote the storage
contract as storageContract . We use storageContract to store
data on the blockchain. In the third step of the data in-
tegrity verification preparation stage, the client needs to
store root1, the root of the Merkle tree, on the blockchain.
At this point, the blockchain implements data storage by
executing the data storage function storeAddress(). The in-
stance of the storageCont ract - storageContractInstance will
be called in storeAddress(). The pseudo-code for storeAddre
ss() is shown in Algorithm 1.

D. Yue, R. Li, Y. Zhang et al. / Journal of Parallel and Distributed Computing 146 (2020) 1–14 9

2. Comparison contract. The comparison contract is denoted
as compareContract in our system. We use compareContract
to compare whether the two parameters passed to the
contract are equal. In step 4 of the validation stage of data
integrity validation, the smart contract needs to compare
the two Merkle root root1 and root2 received. At this point,
the smart contract executes the data comparison function
integrityVerify() to determine if data integrity is guaran-
teed. The instance of the compareContract - compareCont-
ractInstance will be called in integrityVerify(). The pseudo-
code for integrityVerify() is shown in Algorithm 2.

Algorithm 1 storeAddress (data, storageContractInstance)

Input: data, storageContractInstance
Ouput: null
1: if storageContractInstance == null then
2: throw an error: the storageContract was not deployed

successfully;
3: return;
4: else
5: call the set.sendtansacton() function of storage

ContractInstance to store the data in the storage contract;
6: end if

Algorithm 2 integrityVerify(root1, root2, compareContractIn-
stance)
Input: root1, root2, compareContractInstance
Ouput: bool
1: if compareContractInstance == null then
2: throw an error: the compareContract was not deployed

successfully;
3: return;
4: else
5: hash root1 and root2 separately to obtain the correspond-

ing result r1 and r2;
6: call the compare.call() function of compare ContractInstance

to compare r1 and r2;
7: if r1 == r2 then
8: return true;
9: else

10: return false;
11: end if
12: end if
13:

5.3. Function design

In our two-stage data integrity verification framework, the
implementation of each step needs to be supported by corre-
sponding functions. This subsection details the design of several
major functions.

1. Setup(data) → root1. This function is executed by data
owners. In the data preparation stage, the data owner will
use the Setup() function to process the data each time
before uploading the data to ECS. Then, the root of the
Merkle tree will be generated. The pseudo-code for Setup()
is shown in Algorithm 3. sliceData(data) is a function that
shards the original data to obtain multiple data shards.
The specific sharding method can be modified according to
different sharding schemes. publicTree(Digests) is a function
that used to obtain the first node of the common part of
the Merkle tree. merkleRoot(merkleTree) is a function that
calculates the Merkle tree root through the Merkle tree.

2. computeRoot(si, auxiliary)→ root2. This function is used
to calculate the root of the Merkle tree. Different from
calculating root1 in the preparation stage, this function
calculates root2 based on the auxiliary information of the
shard and the random challenge number si corresponding
to the shard. In the fourth step of the data integrity veri-
fication stage, this function will be triggered. This function
corresponds to step 6 in Fig. 8 and the pseudo-code of this
function is shown in Algorithm 4.

Algorithm 3 Setup(data) → root1
Input: data
Ouput: root1
1: if data == null then
2: root1 == null;
3: print error: The input is empty;
4: else
5: shards = sliceData(data);
6: get shards length len;
7: for i = 0 to len
8: choose challenge number si for shardsi;
9: mapping si to (si, shardsi);

10: Digesti = hash(si, shardsi);
11: add Digesti to the collection Digests;
12: merkleTree = publicTree(Digests);
13: root1 = merkleRoot(merkleTree);
14: end if
15: return root1;

Algorithm 4 computeRoot(auxiliary, si)→ root2
Input: auxiliary, si
Ouput: root2
1: if auxiliary == null || si == null then
2: root2 = null;
3: print error;
4: else
5: split auxiliary to get shardi and auxiliary information;
6: root2 = hash(shardi + si, auxiliary information);
7: end if
8: return root2

6. Experiments

In this section, we conduct experiments to test different struc-
tures of Merkle trees and the performance of sampling verifi-
cation. Furthermore, we also measure the gas consumption of
different functions in smart contracts.

6.1. The structure of Merkle trees

We conduct the experiments under three different Merkle tree
structures, which are Binary Branching tree (BBT), Four-Branching
tree (FBT), and Eight-Branching tree (EBT). Then assuming the
total number of shards n is from 16 to 16384 (16, 64, 128, 256,
512, 1024, 2048, 4096, 8192, 16384). The performance of the
three Merkle tree structures was compared in terms of the time
cost of verifying shards, the time cost of building Merkle trees,
and the time cost of generating auxiliary path.

Fig. 9 shows the relationship between the verification latency
and the total number of shards. m represents the number of
branches of the Merkle tree. Since n and m need to satisfy the
relationship n = mk(k = 0, 1, 2, . . . ,) to form a full tree, the n
that different m can take is not completely the same. In Fig. 9,

10 D. Yue, R. Li, Y. Zhang et al. / Journal of Parallel and Distributed Computing 146 (2020) 1–14

Fig. 9. The relationship between the verification latency and the total number
of shards.

Fig. 10. The relationship between the latency of generating Merkle Trees and
the total number of shards.

the total number of shards that BBT, FBT, EBT can obtain are
not exactly the same. Fig. 9 shows that EBT performs best and
BBT performs worst in terms of the time cost of verifying shards.
Fig. 10 shows the relationship between the latency of generating
Merkle Trees and the total number of shards.

From Fig. 10, we can see that FBT and EBT are significantly
better than BBT. This is mainly reflected in the following two
aspects : (1) the latencies of generating the Merkle Tree of FBT
and EBT are always smaller than BBT; and (2) as shards grow, the
FBT’s and EBT’s latency growth rate are significantly smaller than
BBT’s. As the computation cost is positively related to the compu-
tational delay, FBT and EBT are better than BBT in computational
overhead.

In terms of the auxiliary path, the previous theoretical analysis
has concluded that the auxiliary path size increases with the
number of branches. However, each additional element of the
auxiliary path is a hashed string, the increased storage space
is small. Fig. 11 shows the relationship between the latency of
generating auxiliary path and the total number of shards. It can
be seen from Fig. 11 that the time delay for generating auxiliary
paths does not significantly increase with branches. Therefore,

Fig. 11. The relationship between the latency of generating auxiliary path
latency and the total number of shards.

Fig. 12. The relationship between Loss Function L1(N), L2(N) and the sample
size N when f /n changes.

the additional communication and computation costs of the aux-
iliary path caused by the multiple branching tree structures are
negligible. In summary, the performances of FBT and EBT are
better than BBT.

6.2. Sample size

In Section 4, we have introduced the Loss Function L1(N) and
L2(N), which include c0, c1, n, f , N , to decide the suitable sample
sizes. To simplify the calculation, we set c0 = 0, then conduct two
sets of experiments. In the first set of experiments, we assume
the total number of shards n = 10000, c1 = 0.053 and take four
different values of f , which are f /n = 0.001, f /n = 0.002, f /n =

0.01, f /n = 0.05. In the second set of experiments, we assume
the total number of shards n = 10000, f /n = 0.002 and take
four different values of c1, which are c1 = 0.7, c1 = 0.4, c1 =

0.1, c1 = 0.01. Then we compare the performance of L1(N) with
L2(N) when N changes.

From Figs. 12 and 13, we can see that as the sample size N
increases, the value of the Loss Function L1(N) decreases first and

D. Yue, R. Li, Y. Zhang et al. / Journal of Parallel and Distributed Computing 146 (2020) 1–14 11

Fig. 13. The relationship between Loss Function L(N), L2(N) and the sample size
N when c1 changes.

Fig. 14. Statistics on validation overhead when N = 16.

then increases. Thus, there exists a most appropriate value of N
leading to the minimum value of L1(N). However, the value of the
Loss Function L2(N) increases linearly as N increases, and there
is no optimal value of N leading to the minimum value of L2(N).
Therefore, it is more reasonable to define the Loss Function in the
form of L1(N).

From Fig. 12, we can see that when f /n is larger, the minimum
value of L1(N) is closer to the Y -axis and X-axis. That means
the more shards fail, the smaller the optimal sample size is. As
f /n increases, the minimum value of the Loss Function L1(N)
decreases. This implies that the overall validation performance of
this system increases as the number of failed shards increases.
From Fig. 13, we can see that when c1 increases, the optimal
sample size decreases while the minimum value of the Loss
Function increases. It means that when the weight of verification
overhead increases, the optimal sample size decreases, while the
overall validation performance of this system decreases.

Fig. 15. Statistics on validation overhead when N = 256.

Fig. 16. Statistics on validation overhead when N = 1024.

6.3. Order of verification

In order to compare the verification performance of different
algorithms, we set the sample size from 16 to 4096 (16, 256, 1024,
4096), and use the cost of sequential validation as a benchmark.
We make the sample data shard one invalid at a time, then count
the number of verification costs higher or lower than the baseline
at the failure location using different algorithms.

Figs. 13–16 show that the proportion of verification cost higher
than the benchmark increases with the increase of sample size
N . From Fig. 14 we know that when N is small, almost each
algorithm works better than the benchmark. Comparing Figs. 15–
17, we can see that with the increase of sample size N , the
performance of Binary verification is getting worse and worse,
while the performance of other algorithms remains stable. Fi-
bonacci verification and Random verification are work better than
the baseline when N = 16. Exponent verification and Block

12 D. Yue, R. Li, Y. Zhang et al. / Journal of Parallel and Distributed Computing 146 (2020) 1–14

Fig. 17. Statistics on validation overhead when N = 4096.

Table 1
Transaction cost in our system.
Transaction Gas consumption

deploy Storage Contract 233299
storageContract.Set() 85896
storageContract.Get() 22908
deploy Comparison Contract 102495
compareContract.Compare() 46075

verification always work better than the baseline no matter how
N increases. Thus, we can get the conclusion that although the
verification costs of these algorithms are increasing, Exponential
verification and Block verification work better than others.

6.4. Smart contract cost

In Ethereum, every transaction will consume gas. Transactions
in our system are mainly related to smart contracts, which in-
clude deployment and invocation of the smart contracts. The cost
of these transactions measured in our experiment are listed in
Table 1.

Table 1 shows that deploying a smart contract consumes more
gas than calling a smart contract. We tested the amount of smart
contract gas consumed under different number of files, ranging
from 16 to 1024. The experimental results show that the gas
consumption of the contract is independent of the number of
files stored. This is also consistent with our theoretical analysis
that we only store the contract root, and the size of the root is
independent of the number of files. We only counted gas con-
sumption, but did not provide specific cost consumption. Because
the cost of consumption in the Ethereum is equal to the gas
consumption multiplied by the price of gas. While in the private
network of Ethereum, the price of gas can be set by developers
themselves, and there is no uniform standard. Therefore, we only
measure the cost of the contract by the gas consumption.

7. Performance and security analysis

In our scheme, we adopt IPFS as the edge-cloud storage, and
use blockchain to assist data integrity verification. To verify the
rationality of our proposed framework, we compare our frame-
work with the other two frameworks mentioned in related work.

Table 2 shows the comparison result of proposed framework with
existing frameworks in different parameters.

The explanation of Table 2 is shown below. In Sia [19], users
can rent out their free disk space as a cloud storage server. This al-
lows the disk space to be used. Thus, memory utilization has been
improved relative to traditional cloud storage structures [20]. In
our framework, we adopt IPFS to provide storage services. IPFS
is a content-based address file system, that is, the file with the
same content will return the same storage address no matter
how many copies are stored to IPFS. Therefore, when multiple
files of the same content are stored on IPFS, IPFS only stores
one file. Hence, memory utilization is higher. Moreover, IPFS is a
global, point-to-point distributed file system. Anyone with a file’s
IPFS address can access the corresponding file over the network
at anytime. File access is faster, easier, and more public than
traditional file systems.

Compared with centralized cloud storage structure in [20],
decentralized cloud storage structure is more reliable due to the
data stored on multiple cloud nodes in [19] and in our framework.
In our framework, data is sliced into serval shards and then dis-
persed stored on different nodes. This storage mechanism ensures
that no single cloud storage node has the complete data, which
make data storage more security. While in [20] and [19], a cloud
storage server with complete data may be able to exploit the
data privately, thus breaking the security of data and violating
the privacy of users. In addition, we add random number to each
shard and then hash them to get the Merkle tree leaves. The
random number is saved by the client, which ensures that only
the client can generate the correct leaf node. Random numbers
can be saved by the data owner themselves or distributed to
trusted client. This ensures that the right to verify data is fully in
the hands of the data owners, which increases the security and
privacy of data validation.

In our scheme, we propose sampling verification. By selecting
some data pieces to verify the integrity of the whole file, the
verification overhead and delay are reduced compared with [20]
and [19]. Since every transaction executed on the blockchain
is recorded on the blockchain, the verification invoked by the
client will be recorded on the blockchain and cannot be mali-
ciously tampered. These records can be traced, which increases
the reliability and transparency of data integrity verification.

8. Conclusion and future work

In this paper, we propose a general data integrity verifica-
tion framework in edge-cloud storage. It solves the problem
of incredibility exists in traditional verification mechanism by
utilizing blockchain. We adopt edge nodes to jointly maintain a
blockchain, which makes our scheme better combined with edge-
cloud storage scenario. In our framework, we describe the data
integrity verification process in detail and analyze the verification
performance under various Merkle tree structures. To improve
the verification performance while keeping a high verification
precision, we propose rational sampling strategies and calculate
the optimal sample size. For data integrity verification, we design
two types of smart contracts and give the detailed description for
the design. Finally, we demonstrate the feasibility of the proposed
framework by implementing a prototype system and validating
our analysis through extensive experiments. As the future work,
we will deploy our framework under larger number of clients and
explore the optimization to combine blockchain with edge-cloud
storage.

D. Yue, R. Li, Y. Zhang et al. / Journal of Parallel and Distributed Computing 146 (2020) 1–14 13

Table 2
Comparison of proposed framework with existing frameworks.
Parameter Proposed framework Framework in [20] Framework in [19]

Memory utilization High Low Middle

Convenience of data
access

Anytime and anywhere Completely dependent on cloud servers Some rely on cloud servers

Reliability of data
storage

Data storage is more reliable due to the
data stored on multiple different nodes

Centralized cloud storage may have single
point of failure

Data storage is more reliable due to the
data stored on multiple different nodes

Security of data
storage

Data storage is more secure because no
single cloud storage node stores complete
data

Data storage is less secure because the
cloud storage server stores your complete
data

Data storage is less secure because the
cloud storage server stores your complete
data

Permissions of data
integrity verification

Permissions of verification are determined
flexibly by the data owner

Anyone Verification are performed by cloud storage
server

Performance of
verification

Lower overhead and higher real-time Higher overhead and lower real-time Higher overhead and lower real-time

Reliability and
transparency of
verification

High Low High

Table 3
Notations in this paper.
Notation Description

TPA Third Party Auditor
ECS Edge-Cloud Storage
CoT Cloud-Assisted Internet of Things
BC Blockchain
DA Data Owner
DC Data Consumer
Di Digest of shardi in the Multi-Branch Merkle Tree
N The sample size of sampling
n The total number of shards
m Vhe branch number of the Merkle trees
C Verification cost
PV Verification precision
L(N) Loss function
BBT Binary-Branching Merkle trees
FBT Four-Branching Merkle trees
EBT Eight-Branching Merkle trees

CRediT authorship contribution statement

Dongdong Yue: Conceptualization, Methodology, Software,
Writing - original draft. Ruixuan Li: Conceptualization, Method-
ology, Supervision. Yan Zhang: Methodology, Writing - review
& editing. Wenlong Tian: Data curation, Software, Visualization,
Investigation. Yongfeng Huang: Validation, Supervision.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

This work is supported by the National Key Research and
Development Program of China under grants 2016YFB0800402
and 2016QY01W0202, National Natural Science Foundation of
China under grants U1836204, U1936108, 61572221, 61433006,
U1401258 and 61502185 and Major Projects of the National
Social Science Foundation under grant 16ZDA092.

Appendix

To simplify the description, symbols used in this paper are
shown in Table 3.

References

[1] S. Aldossary, W. Allen, Data security, privacy, availability and integrity in
cloud computing: issues and current solutions, Int. J. Adv. Comput. Sci.
Appl. (IJACSA) 7 (2016) 485–498.

[2] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peterson, D.
Song, Provable data possession at untrusted stores, in: ACM Conference on
Computer and Communications Security (CCS 2007), 2007, pp. 598–609.

[3] G. Ateniese, R.D. Pietro, L.V. Mancini, G. Tsudik, Scalable and efficient
provable data possession, in: The 4th International Conference on Secu-
rity and Privacy in Communication Netowrks (SecureComm 2008), 2008,
pp. 1–10.

[4] J. Benet, IPFS - content addressed, versioned, P2P file system, 2014, CoRR
abs/1407.3561.

[5] B. Chen, R. Curtmola, Robust dynamic remote data checking for public
clouds, in: The 19th ACM Conference on Computer and Communications
Security (CCS 2012), ACM, 2012, pp. 1043–1045.

[6] R. Curtmola, O. Khan, R. Burns, G. Ateniese, Mr-pdp: Multiple-replica prov-
able data possession, in: The 28th International Conference on Distributed
Computing Systems (ICDCS2008), IEEE, 2008, pp. 411–420.

[7] Y. Deswarte, J.-J. Quisquater, A. Sadane, Remote integrity checking, in:
Integrity and Internal Control in Information Systems VI, Springer, 2004,
pp. 1–11.

[8] E. Gaetani, L. Aniello, R. Baldoni, F. Lombardi, A. Margheri, V. Sassone,
Blockchain-based database to ensure data integrity in cloud computing
environments, in: The First Italian Conference on Cybersecurity (ITASEC
2017), 2017, pp. 146–155.

[9] L. Huang, G. Zhang, S. Yu, A. Fu, J. Yearwood, Seshare: Secure cloud data
sharing based on blockchain and public auditing, Concurr. Comput.: Pract.
Exper. 31 (22) (2019).

[10] A. Juels, B.S. Kaliski Jr, Pors: Proofs of retrievability for large files, in: The
14th ACM Conference on Computer and Communications Security (CCS
2007), ACM, 2007, pp. 584–597.

[11] B. Liu, X.L. Yu, S. Chen, X. Xu, L. Zhu, Blockchain based data integrity service
framework for iot data, in: The 24th IEEE International Conference on Web
Services (ICWS 2017), IEEE, 2017, pp. 468–475.

[12] I. Lujic, V.D. Maio, I. Brandic, Efficient edge storage management based
on near real-time forecasts, in: The 1st IEEE International Conference on
Fog and Edge Computing (ICFEC2017) Madrid, Spain, May 14-15, 2017,
pp. 21–30.

[13] I. Marco, L.K. R., The truth about blockchain, in: Harvard Business Review,
Harvard University, 2017.

[14] M.R. Nosouhi, S. Yu, W. Zhou, M. Grobler, H. Keshtiar, Blockchain for secure
location verification, J. Parallel Distrib. Comput. 136 (2020) 40–51.

[15] J. Pan, J. McElhannon, Future edge cloud and edge computing for internet
of things applications, IEEE Internet Things J. 5 (1) (2018) 439–449.

[16] F. Sebé, J. Domingo-Ferrer, A. Martinez-Balleste, Y. Deswarte, J.-J.
Quisquater, Efficient remote data possession checking in critical in-
formation infrastructures, IEEE Trans. Knowl. Data Eng. 20 (8) (2008)
1034–1038.

[17] H. Shacham, B. Waters, Compact proofs of retrievability, J. Cryptol. 26 (3)
(2013) 442–483.

[18] S.K. Sharma, X. Wang, Live data analytics with collaborative edge and cloud
processing in wireless iot networks, IEEE Access 5 (2017) 4621–4635.

[19] D. Vorick, L. Champine, Sia: simple decentralized storage, 2014, http:
//www.sia.tech/.

http://refhub.elsevier.com/S0743-7315(20)30314-2/sb1
http://refhub.elsevier.com/S0743-7315(20)30314-2/sb1
http://refhub.elsevier.com/S0743-7315(20)30314-2/sb1
http://refhub.elsevier.com/S0743-7315(20)30314-2/sb1
http://refhub.elsevier.com/S0743-7315(20)30314-2/sb1
http://refhub.elsevier.com/S0743-7315(20)30314-2/sb2
http://refhub.elsevier.com/S0743-7315(20)30314-2/sb2
http://refhub.elsevier.com/S0743-7315(20)30314-2/sb2
http://refhub.elsevier.com/S0743-7315(20)30314-2/sb2
http://refhub.elsevier.com/S0743-7315(20)30314-2/sb2
http://refhub.elsevier.com/S0743-7315(20)30314-2/sb3
http://refhub.elsevier.com/S0743-7315(20)30314-2/sb3
http://refhub.elsevier.com/S0743-7315(20)30314-2/sb3
http://refhub.elsevier.com/S0743-7315(20)30314-2/sb3
http://refhub.elsevier.com/S0743-7315(20)30314-2/sb3
http://refhub.elsevier.com/S0743-7315(20)30314-2/sb3
http://refhub.elsevier.com/S0743-7315(20)30314-2/sb3
http://refhub.elsevier.com/S0743-7315(20)30314-2/sb4
http://refhub.elsevier.com/S0743-7315(20)30314-2/sb4
http://refhub.elsevier.com/S0743-7315(20)30314-2/sb4
http://refhub.elsevier.com/S0743-7315(20)30314-2/sb5
http://refhub.elsevier.com/S0743-7315(20)30314-2/sb5
http://refhub.elsevier.com/S0743-7315(20)30314-2/sb5
http://refhub.elsevier.com/S0743-7315(20)30314-2/sb5
http://refhub.elsevier.com/S0743-7315(20)30314-2/sb5
http://refhub.elsevier.com/S0743-7315(20)30314-2/sb6
http://refhub.elsevier.com/S0743-7315(20)30314-2/sb6
http://refhub.elsevier.com/S0743-7315(20)30314-2/sb6
http://refhub.elsevier.com/S0743-7315(20)30314-2/sb6
http://refhub.elsevier.com/S0743-7315(20)30314-2/sb6
http://refhub.elsevier.com/S0743-7315(20)30314-2/sb7
http://refhub.elsevier.com/S0743-7315(20)30314-2/sb7
http://refhub.elsevier.com/S0743-7315(20)30314-2/sb7
http://refhub.elsevier.com/S0743-7315(20)30314-2/sb7
http://refhub.elsevier.com/S0743-7315(20)30314-2/sb7
http://refhub.elsevier.com/S0743-7315(20)30314-2/sb8
http://refhub.elsevier.com/S0743-7315(20)30314-2/sb8
http://refhub.elsevier.com/S0743-7315(20)30314-2/sb8
http://refhub.elsevier.com/S0743-7315(20)30314-2/sb8
http://refhub.elsevier.com/S0743-7315(20)30314-2/sb8
http://refhub.elsevier.com/S0743-7315(20)30314-2/sb8
http://refhub.elsevier.com/S0743-7315(20)30314-2/sb8
http://refhub.elsevier.com/S0743-7315(20)30314-2/sb9
http://refhub.elsevier.com/S0743-7315(20)30314-2/sb9
http://refhub.elsevier.com/S0743-7315(20)30314-2/sb9
http://refhub.elsevier.com/S0743-7315(20)30314-2/sb9
http://refhub.elsevier.com/S0743-7315(20)30314-2/sb9
http://refhub.elsevier.com/S0743-7315(20)30314-2/sb10
http://refhub.elsevier.com/S0743-7315(20)30314-2/sb10
http://refhub.elsevier.com/S0743-7315(20)30314-2/sb10
http://refhub.elsevier.com/S0743-7315(20)30314-2/sb10
http://refhub.elsevier.com/S0743-7315(20)30314-2/sb10
http://refhub.elsevier.com/S0743-7315(20)30314-2/sb11
http://refhub.elsevier.com/S0743-7315(20)30314-2/sb11
http://refhub.elsevier.com/S0743-7315(20)30314-2/sb11
http://refhub.elsevier.com/S0743-7315(20)30314-2/sb11
http://refhub.elsevier.com/S0743-7315(20)30314-2/sb11
http://refhub.elsevier.com/S0743-7315(20)30314-2/sb12
http://refhub.elsevier.com/S0743-7315(20)30314-2/sb12
http://refhub.elsevier.com/S0743-7315(20)30314-2/sb12
http://refhub.elsevier.com/S0743-7315(20)30314-2/sb12
http://refhub.elsevier.com/S0743-7315(20)30314-2/sb12
http://refhub.elsevier.com/S0743-7315(20)30314-2/sb12
http://refhub.elsevier.com/S0743-7315(20)30314-2/sb12
http://refhub.elsevier.com/S0743-7315(20)30314-2/sb13
http://refhub.elsevier.com/S0743-7315(20)30314-2/sb13
http://refhub.elsevier.com/S0743-7315(20)30314-2/sb13
http://refhub.elsevier.com/S0743-7315(20)30314-2/sb14
http://refhub.elsevier.com/S0743-7315(20)30314-2/sb14
http://refhub.elsevier.com/S0743-7315(20)30314-2/sb14
http://refhub.elsevier.com/S0743-7315(20)30314-2/sb15
http://refhub.elsevier.com/S0743-7315(20)30314-2/sb15
http://refhub.elsevier.com/S0743-7315(20)30314-2/sb15
http://refhub.elsevier.com/S0743-7315(20)30314-2/sb16
http://refhub.elsevier.com/S0743-7315(20)30314-2/sb16
http://refhub.elsevier.com/S0743-7315(20)30314-2/sb16
http://refhub.elsevier.com/S0743-7315(20)30314-2/sb16
http://refhub.elsevier.com/S0743-7315(20)30314-2/sb16
http://refhub.elsevier.com/S0743-7315(20)30314-2/sb16
http://refhub.elsevier.com/S0743-7315(20)30314-2/sb16
http://refhub.elsevier.com/S0743-7315(20)30314-2/sb17
http://refhub.elsevier.com/S0743-7315(20)30314-2/sb17
http://refhub.elsevier.com/S0743-7315(20)30314-2/sb17
http://refhub.elsevier.com/S0743-7315(20)30314-2/sb18
http://refhub.elsevier.com/S0743-7315(20)30314-2/sb18
http://refhub.elsevier.com/S0743-7315(20)30314-2/sb18
http://www.sia.tech/
http://www.sia.tech/
http://www.sia.tech/

14 D. Yue, R. Li, Y. Zhang et al. / Journal of Parallel and Distributed Computing 146 (2020) 1–14

[20] Q. Wang, C. Wang, J. Li, K. Ren, W. Lou, Enabling public verifiability
and data dynamics for storage security in cloud computing, in: The 14th
European Symposium on Research in Computer Security (ESORICS 2009),
Saint-Malo, France. Proceedings, 2009, pp. 355–370.

[21] C. Wang, Q. Wang, K. Ren, W. Lou, Ensuring data storage security in Cloud
Computing, in: The 17th International Workshop on Quality of Service
(IWQoS 2009), Charleston, South Carolina, USA, 2009, pp. 1–9.

[22] J. Xing, H. Dai, Z. Yu, A distributed multi-level model with dynamic
replacement for the storage of smart edge computing, J. Syst. Archit. -
Embedded Syst. Des. 83 (2018) 1–11.

Dongdong Yue received her B.S. degree from School of
Computer Science and Technology at Wuhan University
of Science and Technology in 2017. Now she is a master
in the Intelligent and Distributed Computing Labo-
ratory, School of Computer Science and Technology,
Huazhong University of Science and Technology. Her
research interests include blockchain, access control,
and cloud storage. She is a student member of the IEEE.

Ruixuan Li received the B.S., M.S., and Ph.D. degrees
from School of Computer Science and Technology at
Huazhong University of Science and Technology in
1997, 2000, and 2004 respectively. He is currently a
professor of School of Computer Science and Technol-
ogy at Huazhong University of Science and Technology,
and is the director of the Intelligent and Distributed
Computing Laboratory. His research interests include
blockchain, cloud computing and big data security. He
is a member of the IEEE and ACM.

Yan Zhang obtained his Ph.D. degree in Computer
Science from the University of Sydney, Australia, in
1994. He is a professor at University of Western Sydney
and the leader of Artificial Intelligence Research group
in Western Sydney University. His research interests
include knowledge representation and reasoning, on-
tology based data access, logic programming, intelligent
agents, and information security. Prof Yan Zhang has
published over 150 articles in these research areas in
various international journals and conferences.

Wenlong Tian received his M.S. degree and Ph.D. de-
grees in School of Software and the School of Software
from Huazhong University of Science and Technology
in 2015 and 2019 respectively. Now he is currently
a lecturer in the School of Computer Science and
Technology, University of South China. His research
interests include cloud computing, system security, and
big data management. He is a member of the IEEE.

Yongfeng Huang received the Ph.D. degree in
computer science and engineering from the Huazhong
University of Science and Technology, in 2000. He is
a professor in the Department of Electronic Engineer-
ing, Tsinghua University, Beijing, China. His research
interests include cloud computing, data mining, and
network security. He is a senior member of the IEEE.

http://refhub.elsevier.com/S0743-7315(20)30314-2/sb20
http://refhub.elsevier.com/S0743-7315(20)30314-2/sb20
http://refhub.elsevier.com/S0743-7315(20)30314-2/sb20
http://refhub.elsevier.com/S0743-7315(20)30314-2/sb20
http://refhub.elsevier.com/S0743-7315(20)30314-2/sb20
http://refhub.elsevier.com/S0743-7315(20)30314-2/sb20
http://refhub.elsevier.com/S0743-7315(20)30314-2/sb20
http://refhub.elsevier.com/S0743-7315(20)30314-2/sb22
http://refhub.elsevier.com/S0743-7315(20)30314-2/sb22
http://refhub.elsevier.com/S0743-7315(20)30314-2/sb22
http://refhub.elsevier.com/S0743-7315(20)30314-2/sb22
http://refhub.elsevier.com/S0743-7315(20)30314-2/sb22

	Blockchain-based verification framework for data integrity in edge-cloud storage
	Introduction
	Related work
	Edge storage and edge computing
	Data integrity verification in cloud storage systems
	Blockchain based data integrity verification

	System framework
	System structure
	Verification model
	Preparation stage
	Verification stage

	Verification mechanism
	Structure of the Merkle tree
	Auxiliary information
	Communication cost
	Computational cost

	Sampling strategies
	Sample size
	Order of verification

	System design and implementation
	Framework implementation
	Smart contract design
	Function design

	Experiments
	The structure of Merkle trees
	Sample size
	Order of verification
	Smart contract cost

	Performance and security analysis
	Conclusion and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix
	References

