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ABSTRACT
Recently, oblivious RAM has been widely used to prevent privacy leakage from user’s access pattern.
However, in multi-user scenarios, the obliviousness property of ORAM facilitates the malicious data
modification by unauthorized users, which brings a new security challenge of user accountability to
ORAM applications. Moreover, based on our observations, existing user accountability schemes for
multi-user ORAM induce the extremely unacceptable overhead in both time and storage. What’s
worse, it is still inherent the traditional cloud accountability problem that the untrusted cloud server
may have misbehavior on storing the outsourced data. In this paper, we focus on the issue that how to
do accountability for both malicious users and untrusted cloud server without the independent trusted
third party server.

To overcome the above problems, we design and implement a Traceable Oblivious RAM, or T-
ORAM for short, a cryptographic system that protects the privacy of users and the integrity of out-
sourced data based on group signatures. It can detect malicious users quickly by utilizing the traceabil-
ity property of group signatures, and cost less storage overhead comparing with the existing solution.
Then, we further propose a more secure solution of Blockchain-based Traceable Oblivious RAM (BT-
ORAM). Specifically, by introducing the blockchain technology, BT-ORAM can detect the malicious
behavior from both malicious users and untrusted cloud server. BT-ORAM is the first accountability
work for multi-user ORAM that guarantees against both malicious users and the cloud server. Fi-
nally, security proof and experimental results show that our methods outperform the state-of-the-art
accountability work for oblivious RAM, S-GORAM, in both security and performance.

1. Introduction
As the prevalence of cloud storage, people prefer to out-

source their data to the cloud storage for flexibility and con-
venience. However, many researchers have pay attention to
the security of outsourced data, especially for the privacy
leakage through the user’s access pattern in cloud scenario
[22, 30, 16]. To prevent the privacy leakage through the
user’s access pattern, ORAM was first proposed by Goldre-
ich and Ostrovsky in 1996 [19] and has many various exten-
sions [46, 43, 36]. To further meet the needs of multi-user
scenario, there are many papers proposed multi-user ORAM
schemes, such as PrivateFS proposed byWilliams et al. [50],
ObliviStore proposed by Stefanov and Shi [45], CURIOUS
proposed by Bindschaedler et al. [4], and TaoStore proposed
by Sahin et al. [38].

However, most of these solutions typically leverage par-
allelism to increase the throughput of the ORAM system,
while ignoring some important security guarantees that ma-
licious users or servers may tamper user’s data for their ben-
efits or shirking their responsibility. For example, a com-
pany rent a cloud storage service and encrypted their out-
sourced data before uploading. Employees in different po-
sitions have different data access rights. All employees of
this company can access these ciphertexts through the cloud
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service based on their access permission. Since the ORAM
scheme in remote access includes a read and write opera-
tions, some malicious employees can arbitrarily tamper the
read-only outsourced data while the cloud can not detect this
malicious behavior. Furthermore, to further initial the col-
lusion attack, the malicious user and untrusted Cloud Ser-
vice Provider (CSP) can similarly do malicious tampering.
What’s worse, ciphertexts may be destroyed during the pro-
cesses of hardware migration and software updating. Exist-
ing ORAM can hardly handle these kinds of problems.

To challenge the above problems, existing work [18, 35,
29, 28] apply ORAM to cloud storage with access control
which is based on encryption and signature algorithms. How-
ever, they cannot support the accountability property for ma-
licious tampering. In [28], a malicious user’s accountability
scheme, S-GORAM, is proposed by utilizing the log mech-
anism. However, it will also be suffered from the log mech-
anism. It is because each oblivious access in the ORAM
scheme will cause a read and write operations for additional
blocks which will lead to an exponential growth of the log
size and degradation of the performance.

In this paper, we focused on how to do the accountabil-
ity of malicious employees and untrusted CSP for multi-user
oblivious RAM under the cloud storage scenario. Unlike the
traditional accountability scheme, there is no trusted party
auditor to help the system doing accountability in real life.
Towards the multi-party untrustworthy system, we note that
blockchain technology, whichwas first proposed byNakamoto
in 2008 [42], is a distributed ledger that has been widely
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used to address the trustworthiness problems [40, 51, 41,
52]. However, there still have a gap between the blockchain
and Oblivious RAM because of their distinct purpose. Thus,
we innovatively propose a blockchain-based accountability
scheme for oblivious RAM, named as BT-ORAM, by inte-
grating the blockchain technology with oblivious RAM [43].
In BT-ORAM, user’s access patterns can be hidden against
the curious cloud server, and both users and cloud servers are
held accountable. Besides, to make a trade-off between effi-
ciency and security, we also propose T-ORAM which has a
better performance compared with existing work. Our main
contributions are summarized as follows:

• Firstly, we detailedly analyze accountability problems
in Oblivious RAM. Then, we list two kinds of tamp-
ing attacks under the non-authorized state in themulti-
user ORAM scenario. One is malicious users tamper-
ing with data by facilitating the advantage of reading
redundant data from the cloud. The other is the mis-
behavior of the cloud server.

• Secondly, to bring a more efficient user accountabil-
ity scheme for multi-user ORAM than existing work,
we utilize the property of traceability of group signa-
tures, and propose a Traceable ORAM (T-ORAM). In
our system, users are forced to sign group signatures
on the accessed buckets, which would speed the pro-
cess of accountability. The evaluation results show
that compared with the existing solution, T-ORAM
has improved the performance of user accountability
and reduced the storage overhead of the system.

• Thirdly, to further achieve a high-level secure ORAM
system, we propose a blockchain-based Traceable
ORAM (BT-ORAM) with a comprehensive account-
ability scheme in which not only the malicious users
but also the untrusted cloud server are held account-
able. In BT-ORAM, we innovatively use blockchain
as a trusted infrastructure, and store group signatures
on the distributed ledger for the settlement of disputes.
To the best of our knowledge, we are the first to achieve
such an accountability scheme for ORAM to blame
the incredible parties including the untrusted cloud
server.

• Finally, the security analysis shows that BT-ORAM
can guarantee accountability for both malicious users
and the cloud server without harming the security def-
inition of oblivious RAM.Besides, we also implement
the T-ORAM and BT-ORAM and compare them with
the existing solutions. By conducting the performance
comparison with other solutions, experimental results
show that our system is more efficient and practical
than others.

The rest of the paper is organized as follows. In Section
2, we give a problem statement of our work, and introduce
the threat models in our system. The detailed design of our

solution, T-ORAM, is introduced in Section 3. Then we in-
troduce our new construction BT-ORAM in Section 4. After
systems construction, we analyze the security properties of
our systems in Section 5. Then, Section 6 shows the evalua-
tion results. Finally, we discuss the related work in Section
7 and conclude the paper and introduce our future work in
Section 8.

2. Problem Statement and Threat Models
Although the previous work has proved that the system

security can be improved by applying ORAM to the multi-
user scenario in the cloud storage. Nevertheless, there still
exist several unsolved problems. In this section, we summa-
rize the two most vital problems in data integrity protection.
Then we introduce the threat models of our design.
2.1. Malicious Users

In ORAM, each oblivious access is computationally in-
distinguishable. For each oblivious access, the user fetches
some extra data from the cloud then re-encrypts the data
before uploading to the cloud. However, the obliviousness
property in original ORAM design provides facilitation for
users to tamper with data. For instance, a user wants to read
data A, he first fetches A with some other redundant data
from the cloud to his local storage. Data B that the user
doesn’t hold write permission on is in the redundant data.
Since B is in the user’s local storage, the user can tamper
with B. Then the user writes back the corrupted B with A
and the other redundant data to the cloud. Note that the oper-
ation of getting data from the cloud and then writing back is
a routine operation in ORAM, and the data are encrypted,
the third party cannot detect data damaging either during
data access process or after data stored. If the user keeps
corrupting data without being prevented, there would be a
lot of contaminated data in the cloud, which may lead to an
inestimable loss to the data owner.

To the best of our knowledge, S-GORAM is only one
solution focuses on the above problem for ORAM, which
is proposed by Maffei et al. [28]. It uses a log scheme to
record user’s access path signed with user’s signature. When
finding data corrupted, the user has to parse the log to detect
the malicious user. The size of the log stored on the cloud
will greatly increase as the increment of user request times.
Obviously, it greatly deteriorates the accountability time and
increase the storage overhead.
2.2. Untrusted Cloud Server

Traditional cloud accountability research is aimed at find-
ing out the cloud’s misbehavior [33, 49]. Before consuming
cloud service, users have to agree with the contract drew up
by CSPs, which is full of obligations on the users, but not
many on the CSPs [13]. However, the CSPs are untrusted,
and they may destroy data because of hardware or software
failures or malicious tampering by insiders. The importance
of accountability in cloud storage has already been recog-
nized [39, 20]. When applying ORAM to cloud storage, it
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also faces the problem of CSPs being untrustworthy, and ac-
countability of the CSP is necessary.

Unfortunately, there is no existing work to achieve cloud
server accountability for multi-user ORAM. Even though
the scheme S-GORAMwementioned above has an account-
ability scheme, it uses a log stored on the cloud server to
record paths signed and uploaded by users, and the log only
records the users’ access operations. When finding corrupted
data, by analyzing the log, the scheme can only determine
which user has to be held accountable. S-GORAM puts all
the blame on the user party alone, and not consider if the
misbehaving party is the cloud server. Data corruption may
occur during previous user’s access or may due to the CSP’s
misbehavior, both users and cloud servers are accountable.
Neglect of accountability on either party will lead to persis-
tent evils on the data, and data stored in the cloud would not
be effectively protected.
2.3. Threat Models

There are three parties in the system: data owner, cloud
server and users. The data owner is trusted. All the out-
sourced data owned by the data owner, and he is responsi-
ble for the initialization of encryption and signature schemes
and system set up. The cloud server is honest-but-curious
(HbC), which means that the cloud server would execute
constructions faithfully but has a great interest in user’s in-
formation, and this assumption is common in the ORAM
schemes [28, 44, 11]. Users may be malicious. In the sys-
tem, users hold different access permissions on the data, and
some users may try to read or write the data that they don’t
have access rights.

Consider a stronger threat model that the cloud server is
untrusted, which is a common issue in cloud security. Some
misbehavior of the cloud server would threaten the integrity
of the outsourced data. Under this threat model, security
protection in the system becomes more complicated.

We utilize the blockchain as an infrastructure in our scheme,
and due to its characteristics, it’s trusted. The data owner,
cloud server and users have to join the blockchain, but don’t
have to hold a complete distributed ledger in their local stor-
age.

3. Practical Accountability (T-ORAM)
Existing user accountability scheme formulti-user ORAM

relies on log mechanism to find the misbehaving user, which
imposes an undesirable degradation of accountability time
and high overhead of storage. To design a more practical
scheme, in this section, we propose a Traceable Oblivious
RAM (T-ORAM) under the same assumption as that of the
existing work that the cloud server is honest but curious. We
give a detailed elaboration on how T-ORAMachieves access
control and user accountability.
3.1. Technique Preliminaries

Digital Signatures. In our system, we use digital signa-
tures to protect data integrity. Digital signatures are based
on public-key encryption and hash function. It is a digit

ID 𝐵𝐸ssk

𝐸nc𝑃𝐸(𝑝𝑝𝑘,∙)

𝑆𝑖𝑔𝑛𝐺𝑆(𝑔𝑝𝑘, 𝑔𝑠𝑘𝑖 ,∙)

block𝑖 𝐵𝐸data 𝜎 𝑠𝑝𝑘

E

Bucket 𝐺𝑆𝑏𝑢𝑐𝑘𝑒𝑡

block𝑖+3

Figure 1: Bucket Structure in Server Tree.

string generated by the message sender that others can not
forge, and it is effective proof of the authenticity of the in-
formation. We denote digital signatures as ΠDS = (GenDS ,
SignDS , V eriDS ), where GenDS is the key generation al-
gorithm, and SignDS (resp. V eriDS ) is the signing (resp.
verification) algorithm.

Group Signatures. Group signatures are an extension
of digital signatures, and it has a special property of trace-
ability [10]. We use group signatures to trace the latest user
access in our system. In group signatures, every member of
a group signs a message on behalf of the group, and the re-
sulting signature does not reveal the identity of the signer.
When confronted with a dispute, only a designated group
manager can open signature, and thus reveals the signer’s
identity. We denote group signatures as ΠGS = (GenGS ,
SignGS , V eriGS , OpenGS ), whereGenGS is the key genera-
tion algorithm, SignGS (resp. V eriGS ) is the signing (resp.
verification) algorithm, and OpenGS is the group member
tracing algorithm. Note that in our system, the only trusted
data owner acts as the group manager in group signatures.

Broadcast Encryption. We use broadcast encryption
as the access control encryption scheme in our system. In
broadcast encryption [17], a member of a group encrypts a
message for some subset S of the group users, and any user
in S can use his private key to decrypt the encrypted mes-
sage. We denote broadcast encryption as ΠBE = (GenBE ,
EncBE , DecBE), where GenBE is the key generation algo-
rithm, and EncBE (resp. DecBE) is the encryption (resp.
decryption) algorithm.
3.2. Data Structures

T-ORAM is based on Path ORAM [43]. In Path ORAM,
data stored on the cloud is organized as a tree, every node in
the tree is called a bucket, and every bucket contains a fixed
size of Z blocks. T-ORAM is designed for the multi-user
scenario, and for the purpose of keeping data consistency, we
put encrypted position map and stash on the cloud storage.
We re-design the structure of block and bucket for the facility
of achieving access control and accountability.

The bucket structure in the cloud server tree is shown
in Fig. 1. Every block in the bucket is the asymmetric en-
cryption of the tuple (ID,BEssk, BEdata, �, spk). ID is the
unique mark of the block. BEssk is the broadcast encryptionof the digital signature private key, which regulates the write
access to the block payload. BEdata is the broadcast encryp-tion of the block payload, which regulates the read access. �
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ID 𝐵𝐸ssk

𝐸nc𝑃𝐸(𝑝𝑝𝑘,∙)

𝑆𝑖𝑔𝑛𝐺𝑆(𝑔𝑝𝑘, 𝑔𝑠𝑘𝑖 ,∙)

𝐵𝐸data 𝜎 𝑠𝑝𝑘

E

E 𝐺𝑆𝐸

Figure 2: Block Structure in Server Stash.

is the digital signature signed on the tuple of (ID, BEssk,
BEdata, spk), which protects the integrity of the block, and
spk is the public key of the digital signature. The bucket is
a tuple of (Bucket, GSbucket). Bucket is the joint bytes ofZencrypted blocks. GSbucket is a group signature signed on
the Z blocks by the client.

The unit structure stored on the cloud stash is the block,
and to protect the integrity of stash blocks, we need to add
group signatures on these blocks. The structure of the stash
block is depicted in Fig. 2. A block stored in the stash is
the tuple of (E,GSE). E is the same as the E in the bucket
structure, andGSE is the group signature ofE signed by the
latest accessed user.
3.3. Scheme Description

In this subsection, we introduce the construction andwork-
flow of T-ORAM. Roughly, our scheme can be divided into
two parts which include system setting up and user access.
We first describe the system setting up schemes, and then we
present user access in steps. To simplify the description, the
meaning of some special characters are shown as Table 1.

Table 1
Notations.

Notations Descriptions

n number of clients
N total blocks outsourced to server
ID block id
L=⌈log2N⌉ − 1 height of binary tree
Px path from leaf node x to the root
Sx subset of clients
PE asymmetric public key encryption

System Setup. The system setup is performed by the
data owner. The data owner first needs to initialize the en-
cryption and signature algorithms, then lets clients join the
system, and finally releases data to the cloud storage. We
give a detailed description of the following three schemes:

Setup(1k, n): As shown in Algorithm 1, the data owner
initializes the encryption and signature schemes, generates
the public and private key pairs (lines 1 - 4). Note that line 2
is broadcast encryption for digital signature private key, and
line 3 is broadcast encryption for block payload. Then the
data owner initializes the server database, stash and position
map (lines 5 - 6).

ClientJoin(i): When the user whose id is i first joins

Algorithm 1 T-Setup(1k,n)
Input: The security parameter, 1k; The number of clients,

n;
Output: Deny if the algorithm fails;
1: (ppk, psk)← GenPE(1k);
2: (dsbpk, d1,… , dn)← GenBE(1k, n);
3: (dabpk, b1,… , bn)← GenBE(1k, n);
4: (gpk, gmsk, gsk1,… , gskn)← GenGS (1k, n);
5: send gpk to the server;
6: initialize position map, stash and DB on cloud server

storage;

the system, the data owner assigns the asymmetric encryp-
tion public and private key pair (ppk, psk), the two broad-
cast encryption public and private key pairs (dsbpk, di) and
(dabpk, bi), and the group signature private key gski to the
user i.

AddBlock(j, data): In system initialization, there are
all dummy blocks in the cloud. The data owner releases data
to the cloud storage by writing real data to dummy blocks.
As shown in Algorithm 2, the data owner finds a dummy
block (line 1), and to avoid malicious users reuse the dig-
ital signature private key to another block, the data owner
generates unique digital signature key pair for every block
(line 2). Then the data owner divides clients into a subset in
which users hold read permissions on the block, and a subset
in which users hold write permissions on the block (lines 3
- 10). And then the data owner encrypts and signs these data
(lines 11 - 14), and stores the block on the server (line 15).
Algorithm 2 T-AddBlock(j, data)
Input: The security parameter, 1k; The block id, j; The

block data, data;
Output: Deny if the algorithm fails;
1: if ID == -1 then
2: (spk, ssk)← GenDS (1k);
3: for i = 1; i < n; i + + do
4: if i has read permission then
5: add i to SDA;
6: end if
7: if i has write permission then
8: add i to SDS ;
9: end if
10: end for
11: (BEdata)← EncBE(SDA, dabpk, data);
12: (BEssk)← EncBE(SDS , dsbpk, ssk);
13: (�)← SignDS (ssk, j||BEssk||BEdata||spk);
14: (E)← EncPE(ppk, j||BEssk||BEdata||�||spk);
15: write block into the server;
16: end if

User Access. We formalize user access process in T-
ORAM into five steps, and describe them as follows:

Step1 − ReadStasℎ: The first step of user access pro-
cess is user fetching stash blocks from the cloud server. As
shown in Algorithm 3, for every stash block, the user first
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decrypts the cipher-text E (line 2), and then checks block
integrity by verifying the digital signature �. If checked, the
user adds the block to his local stash, else, he sends the block
to the data owner, and the data owner calls for accountability
algorithm shown as Algorithm 7 to find the malicious user
(lines 4 - 9).
Algorithm 3 T-ReadStash
Input: Request of getting stash blocks;
Output: Deny if the algorithm fails;
1: for each block blocki from server stash do
2: (ID||BEssk||BEdata||�||spk)← DecPE(psk, E);
3: (cℎeck)
4: ← V eriDS (spk, ID||BEssk||BEdata||spk, �);
5: if check then
6: add blocki to the client stash;
7: else
8: send blocki to the data owner;
9: Accountability();
10: break the algorithm;
11: end if
12: end for

Step2 −ReadPatℎ(j, read∕write, newdata): The sec-
ond step of user access is to fetch the path from the cloud
server. The reading path process is shown as Algorithm 4.
The client firstly gets position map from the cloud and ex-
tract path id from the position map, and then he updates the
block path id with a random number, and writes back the po-
sition map into the server (lines 1 - 3). After getting the path
that the user requesting block resides on from the server, the
user checks all digital signatures � in the path, if he finds a
wrong signature of a block, the user sends the bucket that
the block is in to the data owner, and the data owner settle
this dispute by executing Algorithm 7 (lines 4 - 18). If ev-
ery block in the path is right, the user finds the block that
he requests in his local stash. If it’s a write request, the user
modifies the payload of the block and re-signs the block, and
then updates the block in the local stash (lines 20 - 25). If
it’s a read request, the user decrypts the cipher-text to get the
payload of the block (lines 27 - 29).

Step3 − W ritePatℎ(pos): In the third step, the user
writes back path to the cloud, as illustrated in Algorithm 5.
The user iterates his local stash to find proper blocks to fill
buckets of the Path Ppos. The user encrypts these blocks us-ing probabilistic encryption and adds these blocks to the cor-
responding buckets, if the bucket is not fulfilled with real
blocks, the user uses dummy blocks to fill vacancy, and then
he signs on the bucket using group signature, and sends the
path to the cloud (lines 1 - 13). The cloud receives the path
and checks every group signature of buckets in the path, if
every signature is right, the cloud server stores the path on
the storage, else, the server rejects storing the path (lines 14
- 21).

Step4 − W riteStasℎ: The fourth step is writing back
blocks remaining in user local stash to cloud stash. The al-
gorithm of users writing back stash is illustrated in Algo-

Algorithm 4 T-ReadPath(j, read/write, newdata)
Input: The request block id, j; The request operation,

read or write; The new block data, newdata;
Output: Block data;
1: (pos)← getP ositionMap(j);
2: setP ositionMap(j)← random(2L − 1);
3: write back position map into the server;
4: for each bucket bucketi in Ppos do
5: for each block blockm in bucketi do
6: (ID||BEssk||BEdata||�||spk)
7: ← DecPE(psk, E);
8: (cℎeck)
9: ← V eriDS (spk, ID||BEssk||BEdata||spk, �);
10: if check then
11: add blockm to the client stash;
12: else
13: send bucketi to the data owner;
14: Accountability();
15: break the algorithm;
16: end if
17: end for
18: end for
19: block b = clientStash.find(j);
20: if write then
21: (data)← DecBE(SDA, i, bi, dabpk, BEdata);
22: (BEnewdata)← EncBE(SDA, dabpk, newdata);
23: (ssk)← DecBE(SDS , i, di, dsbpk, BEssk);
24: (�′ )← SignDS (ssk, j||BEssk||BEnewdata||spk);
25: update block b in the client stash;
26: else
27: if read then
28: (data)← DecBE(SDA, i, bi, dabpk, BEdata);
29: end if
30: end if
31: return data;

rithm 6. The user encrypts every block in his local stash with
probabilistic encryption, and signs group signatures on these
blocks, then sends these blocks to the cloud server (lines 1
- 5). After receiving stash blocks from the user, the server
checks every group signature of these blocks, if all right, he
stored these blocks in the server stash, else he rejects storing
these blocks (lines 6 - 13).

Step5 −Accountability: For narrative convenience, we
put accountability in the fifth step, but note that accountabil-
ity can be executed during the whole user access process.
The user accountability algorithm is shown as Algorithm 7.
After receiving a bucket from a client, the data owner checks
each block in the bucket, if he finds an incorrect digital sig-
nature of a block, he gets the bucket group signature as input,
and executes the open algorithm in group signature scheme
to reveal the malicious user (lines 1 - 13). If the data owner
receives a stash block, he checks the digital signature of the
block first, if incorrect, he gets the block group signature as
the open algorithm input, and reveals the malicious client
(lines 14 - 24).
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Algorithm 5 T-WritePath(pos)
Input: Path id, pos;
Output: Deny if the algorithm fails;
1: for each bucket bucketi in Ppos do
2: repeat
3: (block)← findF romClientStasℎ(bucketi);
4: (E)← EncPE(ppk, j||BEssk||BEdata||�||spk);
5: add E to bucketi;
6: until bucketi is full or stash has no proper blocks
7: if bucketi is not full then
8: add dummy blocks into bucketi;
9: end if
10: (bucketi||GSbucket)
11: ← bucketi||SignGS (gpk, gski, bucketi);
12: end for
13: send Ppos to the server;
14: for each bucket bucketi in Ppos do
15: (cℎeck)← V eriGS (gpk, bucketi, GSbucketi );16: if check then
17: write bucketi to the storage;
18: else
19: reject writing Ppos;
20: end if
21: end for

Algorithm 6 T-WriteStash
Input: Request of writing client stash blocks back;
Output: Deny if the algorithm fails;
1: for each block blocki in client stash do
2: (E)← EncPE(ppk, j||BEssk||BEdata||�||spk);
3: (E||GSE)← E||SignDS (gpk, gski, E);
4: end for
5: send stash blocks to the server;
6: for each stash block blocki received do
7: (cℎeck)← V eriGS (gpk, E,GSE);
8: if check then
9: add blocki to server stash;
10: else
11: reject writing stash;
12: end if
13: end for

4. Our Construction (BT-ORAM)
Traditional cloud accountability is to solve the dispute of

untrusted CSP’s misbehavior, but in T-ORAM and the exist-
ing work, only user party is held accountable. For a stronger
threat model that the cloud server maybe misbehaved, to
achieve a more comprehensive accountability scheme, we
propose a Blockchain-based Traceable ORAM based on T-
ORAM by utilizing the blockchain technology. We design
the block structure inORAM tree and the data structure stored
in the distributed ledger of the blockchain. We formalize
some policies into a smart contract which would be executed
by nodes in the blockchain.

Algorithm 7 T-Accountability
Input: Bucket or block received from client;
Output: Malicious client;
1: if bucket then
2: for each block blocki in bucket do
3: (ID||BEssk||BEdata||�||spk)
4: ← DecPE(psk, E);
5: (cℎeck)
6: ← V eriDS (spk, ID||BEssk||BEdata||spk, �);
7: if !check then
8: (clientName)
9: ← OpenGS (gpk, gmsk, bucket, GSbucket);
10: break;
11: end if
12: end for
13: end if
14: if stash block then
15: (ID||BEssk||BEdata||�||spk)
16: ← DecPE(psk, E);
17: (cℎeck)
18: ← V eriDS (spk, ID||BEssk||BEdata||spk, �);
19: if !check then
20: (clientName)
21: ← OpenGS (gpk, gmsk, E,GSE);
22: end if
23: end if
24: return clientName;

4.1. Technique Preliminaries
Blockchain. In our system, blockchain is used as public

infrastructure, and some keymetadata are stored on it. There
are two concepts related to our system in the blockchain,
which are described as follows:

• Distributed ledgers: Blockchain combines data blocks
of transactions in sequence according to time sequence,
and it is a distributed ledger that can be accessed or
managed by many people that do not necessarily trust
each other and that do not share a common trusted
third party [53]. It guarantees non-tampering and non-
forgery by cryptography. Once data is stored in the
distributed ledgers, tampering is almost impossible.

• Smart contract: The smart contract proposed by Sz-
abo [47] is a program that represents an agreement.
When certain conditions are met, the smart contract is
automatically executed by nodes that participate in the
blockchain management. Examples of implementa-
tions are fromEthereum inwhich called smart contract

[1] and IBM Hyperledger in which called chaincode

[2].
Blockchain is extensively employed in academia because

of its excellent security characteristics. Its privacy protec-
tion, tamper-resistance, decentralized trustworthiness are the
decisive factors that we utilize the blockchain in our system
structure. Explanations on the principles of these features
are as follows:
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ID 𝐵𝐸ssk

𝐸nc𝑃𝐸(𝑝𝑝𝑘,∙)

𝐵𝐸data 𝜎 𝑠𝑝𝑘

E

Figure 3: Block Structure.

• Privacy protection: The cryptographic techniques used
extensively in blockchain ensure that although the data
on the chain is public, it can not be parsed by unau-
thorized users. The address of the sender and receiver
of the transaction is the hash value of the key, which
makes it impossible for the third party to associate
the real identity of the transaction party according to
the transaction address, thus achieving the effect of
anonymity.

• Tamper-resistance: Blockchain stores transactions not
in a single database, but in multiple copies of the same
ledger kept by distributed nodes. This makes it diffi-
cult to tamper with a single record because a hacker
would need to change all the ledgers. Moreover, the
blockchain is the hash chain of blocks, and hackerwould
need to change the block containing that record as well
as those linked to it to avoid detection, and this is a
profoundly difficult process.

• Decentralized trustworthiness: Blockchain uses pure
mathematicalmethods to complete data validation, ac-
counting, storage, maintenance and transmission. These
processes are accomplished by distributed nodes, which
do not rely on central agencies to establish trust rela-
tionships among distributed nodes. Only when con-
sensus is reached can data be written into the books.

An important point of blockchain is who assumes the
role of node [31]. In our system, this depends on the data
owner’s choice. If there are no restrictions on access groups
of outsourced data, and anyone can audit data, public blockchain
can be used in our system, and all the users in the system
should be a node. If authorized by a group, an consortium
blockchain can be used, which is maintained jointly by the
members of the organization, and the ledger-keeper is deter-
mined by the members of the organization through negoti-
ation, such as running a node for each organization. If it is
internal data of the group and does not want external audit,
private blockchain can be used to customize the nodes of the
maintenance blockchain, which can not completely solve the
trust problem.
4.2. Data Structures

ORAMBlock Structure. As designed in pathORAM, a
bucket in the tree containsmany blocks, andwe re-design the
block structure as shown in Fig. 3. Every block in the bucket
is the public encryption of the tuple (ID, BEssk, BEdata,
�, spk) which we denote to E, and the meaning of the nota-
tions inE are the same as those in T-ORAM block structure.

head

𝑏𝑙𝑜𝑐𝑘𝑖

tx

E

ORAM bucket

GSDigest

getDigest(∙)

𝑠𝑖𝑔𝑛𝐺𝑆(𝑔𝑝𝑘, 𝑔𝑠𝑘𝑖 ,∙)

head

𝑏𝑙𝑜𝑐𝑘𝑖+1

tx

head

𝑏𝑙𝑜𝑐𝑘𝑖+2

tx

Blockchain

Figure 4: Blockchain Data Structure.

Blockchain Data Structure. We store some key data
in the blockchain, and the data structure is shown as Fig. 4.
The user who recently accessed the bucket gets the digest
Digest of the bucket, and then signs group signature GS
on the digest. Finally, the data stored in the blockchain is a
key-value pair of (Digest, GS), and users can query the key
Digest from blockchain to get the corresponding value GS.
Note that when the operation object is stash block, the data
structure only has to replace the bucket with the stash block
in Fig. 4, whereas all others keep the same.
4.3. Smart Contract

Algorithm 8 SigCC
Input: ChaincodeStubInterface, stub; string array, args;
Output: Return nil if the algorithm fails;
1: func batchSet()
2: i = 0;
3: for i < args.length do
4: (cℎeck)← verifyGroupSignature(args[i], args[i+
1]);

5: if cℎeck then
6: stub.P utState(args[i], [ ]byte(args[i + 1]));
7: else
8: return
9: end if
10: i += 2;
11: end for
12: func get()
13: (val)← stub.GetState(args[0]);
14: return val;

Algorithm 8 shows the smart contract for BT-ORAM in
blockchain in the format of chaincode, and we marked it as
SigCC . It describes how the policies are encoded into a
contract. There are mainly two policies in the smart contract,
and described as follows:

• batchSet(): As shown in lines 1 - 11, this policy regu-
lates the process of blockchain storing the (Digest, GS)
key-value pairs. After nodes in the blockchain receiv-
ing a group signature verifying transaction from a user,
the smart contract is triggered out, and the batcℎSet()
method is executed. All (Digest, GS) pairs in the ar-
gument of the transaction would be get as input to
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verify group signatures, and if all validations passed,
the key-value pairs would be stored in the blockchain.
Note that handling a transaction is a time-consuming
process in blockchain, and compared with sending a
group signature verifying transaction in bucket, send-
ing transaction in pathmakes the time complexity from
O(logN) to O(1) whereN is the total number of data
blocks, thus we design batcℎSet() method instead of
set() method.

• get(): As shown in lines 12 - 14, this policy is used
for handling the value query transaction. After nodes
in the blockchain receiving a value query transaction
from a user, the get() method in the smart contract is
executed. The method gets the argument of the trans-
action as input, and queries corresponding value from
the blockchain.

4.4. Scheme Description
The construction of BT-ORAM is based on that of T-

ORAM, and the two systems have the same access control
and data integrity protection schemes, steps of user access
are also the same, but we re-design some algorithms in BT-
ORAM to achieve its special purpose. In this subsection, for
simplify, we mainly introduce three algorithms of B-
TORAM that are obliviously different from those of T-ORAM.
Nevertheless, we emphasize that BT-ORAM implements dif-
ferent function comparedwith T-ORAM, it is based on block-
chain to achieve amore comprehensive accountability scheme.

Setup(1k, n): As shown in Algorithm 9, the data owner
initializes the encryption and signature schemes, generates
the public and private key pairs (lines 1 - 4). Note that line
2 is broadcast encryption for digital signature private key,
and line 3 is broadcast encryption for block payload. Then
the data owner assigns keys to system roles and initializes
the server database, stash and position map (lines 5 - 6).
The data owner joins the network of blockchain, and sends a
transaction to blockchain for installing smart contract (lines
7 - 8). Nodes in blockchain install the smart contract (line
9).

Algorithm 9 BT-Setup(1k,n)
Input: The security parameter, 1k; The number of clients,

n;
Output: Deny if the algorithm fails;
1: (ppk, psk)← GenPE(1k);
2: (dsbpk, d0,… , dn)← GenBE(1k, n);
3: (dabpk, b0,… , bn)← GenBE(1k, n);
4: (gpk, gmsk, gsk0,… , gskn)← GenGS (1k, n);
5: send keys to system roles
6: initialize position map, stash and DB on cloud server

storage;
7: join blockchain;
8: send installing SigCC transaction;
9: nodes in blockchain install SigCC;

W ritePatℎ(pos): The process of users writing back path

is illustrated in Algorithm 10. The user iterates buckets in
path Ppos, he re-organizes blocks in his local stash to bucket(lines 3 - 9), then gets digest of the bucket, and signs group
signature on the digest, adds the digest and group signature
to an string array A (lines 10 - 13). After all buckets in the
path Ppos are fulfilled, the user gets A as an argument, sends
a group signature verification transaction to the blockchain
(line 15). The batcℎSet() method in the smart contract of
nodes would be executed automatically (line 16). Then the
user sends the path to the cloud (line 17). After receiving
path from the user, the cloud server extracts digest of every
bucket in the path, and gets the digest as an argument, sends
a query transaction to the blockchain. The get() method in
the smart contract of nodes would be executed automatically
and returns the query result to the cloud server. If the result
is not null, the server stores the path on the storage, else, the
server rejects storing the path (lines 18 - 27).
Algorithm 10 BT-WritePath(pos)
Input: Path id, pos;
Output: Deny if the algorithm fails;
1: for each bucket bucket in Ppos do
2: repeat
3: (block)← findF romClientStasℎ(bucket);
4: (E)← EncPE(ppk, j||BEssk||BEdata||�||spk);
5: add E to bucket;
6: until bucket is full or stash has no proper blocks
7: if bucket is not full then
8: add dummy blocks into bucket;
9: end if
10: (digest)← getDigest(bucket);
11: add digest to A[ ];
12: (GS)← SignGS (gpk, gski, digest);
13: add GS to A[ ];
14: end for
15: sendVerifyGSTx(A[ ]);
16: (response)← SigCC.batcℎSet(A[ ]);
17: send Ppos to the server;
18: for each bucket bucket in Ppos do
19: (digest)← getDigest(bucket);
20: (result)← sendQueryT x(digest);
21: (response)← SigCC.get(digest);
22: if result != null then
23: write bucket to the storage;
24: else
25: reject writing Ppos;
26: end if
27: end for

Accountability(E): The process of malicious parties ac-
countability is shown as Algorithm 11. After receiving a
bucket or a stash block from a user, the data owner checks
the integrity of the data as the accountability scheme of T-
ORAM dose. If the data is corrupted, the data owner ex-
tracts digest of the data, and sends a query transaction to the
blockchain, and nodes in the blockchain execute the smart
contract and return the query result (lines 1 - 4). If the result
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is null, the algorithm returns the server name, which means
that the server has tampered with the data (lines 5 - 6). Else,
the data owner gets the result which is actually a group sig-
nature as input, and executes the open algorithm of group
signatures, to reveal the malicious user’s real identity (lines
7 - 10).
Algorithm 11 BT-Accountability
Input: Bucket or block received from user, E;
Output: Malicious party;
1: if the integrity of E is destroyed then
2: (digest)← getDigest(E);
3: (result)← sendQueryT x(digest);
4: (response)← SigCC.get(digest);
5: if result == null then
6: maliciousParty = serverName;
7: else
8: (clientName);
9: ← OpenGS (gpk, gmsk, digest, result);
10: maliciousParty = clientName;
11: end if
12: return maliciousParty;
13: end if

5. Security Analysis
The design goal of T-ORAM is to develop a practical

user accountability scheme formulti-user ORAMwhilemain-
taining at least the same security level as that of the exist-
ing work. Moreover, anonymity remains guaranteed in T-
ORAM, which is pointed out to be sacrificed in the existing
work [28]. BT-ORAM achieves higher level security than
T-ORAM based on blockchain technology. We analyze the
security properties of T-ORAM and BT-ORAM in two sub-
sections respectively.
5.1. Security and Privacy of T-ORAM

Secrecy. If no party is able to read blocks that they don’t
hold read permissions on in a system, the system has the
property of secrecy. In T-ORAM, all blocks are encrypted
before released to the cloud, so the cloud cannot deduce any
information about the content of any block. The system uses
broadcast encryption to encrypt the payload of all blocks for
access control, only users that have read permissions can de-
crypt blocks to get the payload. So, T-ORAM has the prop-
erty of secrecy.

Obliviousness. A scheme is oblivious if the cloud server
cannot distinguish two arbitrary user access sequences with
the same length. In T-ORAM, whether a user wants to read a
block from the cloud or write data to the cloud, the process
is the same: the user fetches position map from the cloud,
randomly updates the position map and writes it back to the
cloud; then the user fetches stash blocks and path from the
cloud, and writes the path and stash blocks back to the cloud.
Thus, for the two access sequences of the same length, the
cloud server has no other useful information to distinguish

them except the timing of their occurrence. So T-ORAM is
oblivious.

Anonymity. We say a scheme protects the anonymity
of users if the server cannot relate a written back data to a
certain user. In our scheme, we use group signature to sign
on buckets, and in the view of the server, he only knows that
someone represents a group to sign on the bucket, but doesn’t
know whom. So our scheme achieves anonymity.

Traceability. If a scheme can trace the latest user who
accessed the data, we say that the scheme has the property
of traceability. Our system guarantees traceability based on
group signatures, and there are many research work on group
signatures achieved traceability property [3, 7, 8]. In our
system, we use the group signature scheme which is trace-
able and achieves open algorithm to sign buckets and stash
blocks. If we want to find the latest user who accessed the
block, we take the group signature scheme and use the open
algorithm to reveal the user. So our scheme achieves trace-
ability.
5.2. Security and Privacy of BT-ORAM

BT-ORAM has the secrecy and obliviousness security
properties the same as T-ORAM, and to avoid repetition,
they are not described in this subsection. Moreover, BT-
ORAM still guarantees anonymity in a more complicated
circumstance and achieves multi-party accountability.

Anonymity. A scheme is anonymity-preserving if any
third party cannot efficiently link operations to a specific
user. In BT-ORAM, there are mainly two types of oper-
ations, one is user-cloud interaction, and another is user-
blockchain interaction.

• Anonymity in user-cloud interaction: Although after
accessing a block, the user has to sign group signature
on it, the group signature scheme has the property of
anonymity. From the cloud server’s perspective, it can
only know that a user on behalf of a group to sign on
the block, but cannot determine the real identity of the
user.

• Anonymity in user-blockchain interaction: Users in
the blockchain correspond only to the public key ad-
dress, not to the user’s real identity. Users can partici-
pate in blockchain and complete transactions without
exposing their real identities. After sending a trans-
action to the blockchain, any third party can only find
transfer records on the blockchain network, but can’t
know more information behind the address.

In summary, BT-ORAM has the property of anonymity.
Multi-party Accountability. If in a scheme, any party

cannot write entries he does not hold write permission on
without being detected, we say that the scheme has the secu-
rity property of multi-party accountability. In BT-ORAM,
there are two incredible parties, users and cloud server, and
we discuss it in two situations as follows.

• User tampered with data: Only when the data is in
user local stash can the user tamper with the data. We
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marked the malicious user as M . After tampering
with the data which we marked as �,M has to extract
digest of the bucket which we marked as � that � is
in, signs group signature on the digest, and sends the
key-value pair (Digest, GS) to the blockchain. The
next user who accessed � would find the integrity of
� is compromised and notify the data owner. The data
owner getsDigest of �, and queries from the blockchain,
he would get GS, and after getting GS as input and
executing open algorithm of group signatures, the data
owner can reveal the malicious userM .

• Cloud server tampered with data: only when the
bucket’s group signature is stored in the blockchain
would the cloud server store the bucket. We marked
a bucket as �, and the cloud server tampered with it,
we marked the corrupted bucket as � ′ . A user who ac-
cessed � ′ would find blocks in � ′ has been destroyed,
and notifies the data owner. The data owner extracts
the digest of � ′ , and queries from the blockchain. But
the key-value pair (Digest, GS) of � is stored in blockchain
instead of the key-value pair (Digest′ , GS ′ ) of � ′ . So
the query result would be empty, and the data owner
can conclude that the cloud server has to take the blame.

From the above analysis, we can conclude that whether
users or cloud server tampered with entries, they can be held
accountable in BT-ORAM. So, BT-ORAMhas achievedmulti-
party accountability.

6. Evaluation
In this section, we compare the accountability time and

storage overhead between T-ORAM and the existing work
of S-GORAM which achieves a user accountability scheme
for ORAM. BT-ORAM and T-ORAM implement different
functions, and there is no comparability between the two
schemes. But to show more intuitively the performance of
BT-ORAM,we use T-ORAMas an unprotected baseline and
compare the read-write and accountability performance of
the two systems. To simplify the description, the meaning
of some abbreviations in experimental comparison charts are
shown as TABLE 2.

Table 2
Notations.

Notations Descriptions

B block size
BN total data storage in cloud
B − Client the user side of BT-ORAM
B − Server the cloud side of BT-ORAM
S − GORAM scalable group ORAM

proposed by Maffei et al. [28]
T − ORAM traceable ORAM proposed in this paper
BT − ORAM blockchain-based traceable ORAM

proposed in this paper
unprotected T-ORAM
baseline

6.1. Cryptographic Instantiations
Broadcast Encryption. We take the broadcast encryp-

tion scheme introduced by Boneh et al. [6] as the access con-
trol encryption scheme. This scheme is fully secure against
any number of colluders, and both cipher-text and private
key are of constant size for any subset of receivers. Since the
broadcast encryption can only encrypt messages belonging
to the bilinear group, we useK that belonging to the bilinear
group as the private key of AES [24] which is a private-key
encryption scheme to encrypt the real message.

Digital Signatures. Even though there are various dig-
ital signature algorithm implementations, we choose RSA
signature algorithm [37] since it has a good performance and
short signature length.

Group Signatures. We use the group signature scheme
introduced by Isshiki et al. [23]. The RSA-based scheme
supports opening which is built on top of an additional el-
liptic curve group. The scheme achieves anonymity, and is
secure under the strong RSA and Decisional Diffie-Hellman
(DDH) assumptions. The code is released in GitHub that
implemented by Potzmader et al. [34]

Blockchain. For the blockchain system, we chose Hy-
perledger Fabric [2]. Hyperledger Fabric is a blockchain
framework implementation that allows components, such as
consensus and membership services, to be plug-and-play,
and it leverages container technology to host smart contracts
called chaincode that comprise the application logic of the
system.
6.2. Systems Implementation

We conduct the simulation on an Ubuntu system with an
Intel(R) Xeon(R) CPU E5-2630 V3@2.40GHz 8 cores 16G
Memory.

We implement our systems and the existing work in Java.
The broadcast encryption and group signatures are both im-
plemented based on JPBC [9], and the bilinear groups use
prime-order bilinear groups with 80-bit Zp and 256-bit G.
Note that the group order cannot meet the security needs for
today’s system, these parameters can only be used for testing
the correctness of the scheme implementations.

The blockchain is implemented based on fabric-sdk-java
1.0.0. We deploy a test blockchain network in our Ubuntu
system. The components of fabric such as the couchdb, the
kafka, the fabric tools, are hosted on the VM images, and
we use docker18.06.1-ce to manage these images. We use
go1.10.3 to implement the chaincode. There are four peer
nodes and one order node in the blockchain network, and
they all run on the docker. The data owner, users and cloud
server join in the same channel.
6.3. Experimental Results

Since the authors of S-GORAM have not made public
of their code, we adopted an optimistic way to implement
S-GORAM. To prevent buckets from overflowing, accord-
ing to the proof of Stefanov et al. [43], we fix bucket size to
four, that is, each bucket contains four blocks. The storage
overhead is composed of BN, encryption overhead, signature
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overhead and log overhead. Since T-ORAM and BT-ORAM
adopt the same cryptographic algorithms, the storage over-
head of the two systems are the same, and there is no need to
compare them. The experimental results are shown as fol-
lows.

Effect of Block Size on Performance. As shown in
Fig. 5, we fix BN=1GB and vary the block size from 4KB
to 1MB to observe how the block size affects the perfor-
mance of our systems. In S-GORAM, if a client wants to
execute the accountability algorithm, he fetches the log from
the server and parses the log to find the malicious client.
When BN=1GB, B=1MB, the size of a record in the log
reaches 33.7MB. In order to avoid large file transmission be-
tween the client and the server, we assume that after a client
tamperedwith a block, the server-side handles 10 other client
requests, and data tampering is detected, and the client who
detects data tampering starts to blame the malicious user.
As shown in Fig. 5(a), there is little fluctuation in client ac-
countability time of T-ORAM with varying block sizes, and
the actual time is from 1.2ms to 1.7ms. But the account-
ability time of S-GORAM is increasing with the increase
of block size, and the time gap with T-ORAM is gradually
widening, when B=1MB, the time gap is 7236ms, nearly
4256 times of the accountability time of T-ORAM for S-
GORAM to find the malicious user. In Fig. 5(b), the average
accountability time of BT-ORAM fluctuates from 15.2ms
to 31.3ms as varying B from 4KB to 1MB. In BT-ORAM,
when blaming the malicious party, the data owner has to
query the blockchain, and the accountability process is more
complex than that of the unprotected baseline, so the average
accountability time of BT-ORAM is larger than that of the
unprotected baseline.

In Fig. 5(c), when B=4KB, the storage overhead of T-
ORAM is 227MB bigger than that of S-GORAM. There are
a lot of buckets in the tree, and T-ORAM needs to sign ev-
ery bucket with a group signature, and this leads to greater
storage overhead. But after B=8KB, the storage overhead of
S-GORAM is more than that of T-ORAM, and the scale of
the gap is becoming larger. One reason is that when we ex-
pend block size, the bucket count in the tree reduces, and that
makes the group signature overhead cut down, and finally
causes the storage overhead of T-ORAM decrease. Another
reason is that with the increasing size of the block, the record
size of the log is getting bigger, and this results in the grow-
ing storage overhead of S-GORAM.

In Fig. 5(d) and Fig. 5(e), we vary B to test the read-write
performance of client-side and server side of BT-ORAM.
As shown in Fig. 5(d), the average client operation time is
added by user-side operation time and blockchain operation
time. The fluctuation of the client operation time of BT-
ORAM is an inner cavetto line, and the lowest point is where
B=64KB, and the operation time is 620ms. The peak of the
inner cavetto line is where B=1MB, and the operation time
is 944.5ms. In Fig. 5(e), the average server operation time
is added by cloud side operation time and blockchain oper-
ation time. When varying the block size, the changing trend
of the server operation time is not regular, and the best per-
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Figure 6: Comparison Results for Varying Client Request
Times Where BN=1GB.

formance is when B=256KB, and the server operation time
is 405.4ms. The worst performance is when B=1MB, and
the server operation time is 2412.3ms. From the two fig-
ures, we can see that blockchain operation time occupies a
large part of both client operation time and server operation
time. If we don’t consider the blockchain time overhead, the
user side operation time is close to the unprotected baseline
when B is small. Even when B is very large, the user side
performance of BT-ORAM is better than that of the baseline.
The cloud side performance is always better than that of the
unprotected baseline if we don’t consider blockchain’s time
overhead, that’s because the cloud side of the baseline has
to verify group signatures of every bucket in path received
from the user, but in BT-ORAM, the cloud side judgment
whether to store a path is based on blockchain query results
without the time-consuming verification.

Accountability Time Evaluation. We denote x as the
server processing client request time before a client finds the
wrong block. In Fig. 6(a) we compare the accountability
time between T-ORAM and S-GORAM where x is changed
from 1 to 400. Obviously, the accountability time of T-ORAM
is nearly independent with x. In other words, each process
of executing the accountability algorithm in T-ORAM has a
stable accountability time under various client request times.
However, S-GORAM’s accountability time dramatically in-
creases as the incremental of x. It is because the continuous
incremental log records in S-GORAM greatly increase the
time of the client parsing the log and detecting the wrong
block. Once x is 400, the time gap between the two schemes
is 23678ms.

T-ORAM’s storage overhead remains unchanged in
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Figure 5: Comparison Results for Varying B Where BN=1GB.

Fig. 6(b), because its storage overhead is independent of x.
But S-GORAM’s storage overhead increases linearly with x,
which is caused by the raising of records in the log. When
x is 400, the storage overhead of S-GORAM is 22 times of
T-ORAM. It can be seen that S-GORAM is not suitable for
the cloud scenario that has many users and users access data
frequently, but T-ORAM is applicable to any user scenario
and has higher practicability.

It is noted that we do not evaluate the impact on BT-
ORAM’s accountability time caused by various client re-
quests, since the performance of BT-ORAM is totally inde-
pendent with the client request times.

Effect of Data Capacity on Performance. As shown
in Fig. 7(a), when we fix the client request times on 50, that
means the log has 50 records, and B=32KB, the accountabil-
ity time of T-ORAM is almost invariable for varying BN, but
it’s gradually increasing of S-GORAM, andwhenBN=128GB,
the accountability time of S-GORAM is 17414ms, but it’s
only 1.5ms of T-ORAM. In Fig. 7(b), the accountability time
of BT-ORAM is stable around 18.5ms.

In Fig. 7(c), the superiority of reducing storage overhead
of T-ORAM is not obvious due to the large base of the stor-
age size. But in fact, when BN=1GB, the storage overhead
of S-GORAM is 5.8GB bigger than T-ORAM, and when BN
= 128GB, the gap reaches 6.7GB.

In Fig. 7(d) and Fig. 7(e), we test the read-write per-
formance of client-side and server-side of BT-ORAM. In
Fig. 7(d), as BN increases from 1GB to 64GB, the client
average operating time of BT-ORAM increases from 620ms
to 1157.5ms. In Fig. 7(e), the server average operating time

of BT-ORAMfluctuates from 451.6ms to 726.4ms as BN in-
creases. Still, the blockchain time overhead takes up a large
weight in system operating time overhead, and especially on
the server-side. Compared with the unprotected baseline,
the fluctuation range of BT-ORAM is less. Because in BT-
ORAM, the group signature is signed on the digest, but in
the unprotected baseline, the group signature is signed on
the bucket directly, and the size of a bucket is much larger
than that of digest which leads to a greater time overhead.
When we fix B, and increase BN, the number of a bucket in
a path also increases, and that makes the time difference is
becoming more and more obvious.

In summary, T-ORAM has a substantial gain in account-
ability performance and the storage cost over S-GORAM in
the case of almost no loss of client reading and writing per-
formance. Moreover, S-GORAM needs to consider when
it is the right time point to check the integrity of all blocks
and then empty the log, and the process of waiting for veri-
fying all blocks’ signatures is annoying for clients. Further-
more, there is no need to produce the log for accountability
in T-ORAM. Therefore, T-ORAM avoids the transfer cost of
large log files, which is related to client request times.

We also verify the feasibility of BT-ORAM, and give a
detailed performance evaluation of our system. In a data ac-
cess operation of BT-ORAM, blockchain’s operation signif-
icantly affects the performance of the system, and this is due
to the characteristics of blockchain. Without considering the
blockchain’s time overhead, the performance of BT-ORAM
is close to that of the unprotected baseline. In the future,
we will attempt to further improve the BT-ORAM’s perfor-
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Figure 7: Comparison Results for Varying BN.

mance by speeding up the blockchain framework.

7. Related Work
WhenORAMwas first applied to cloud storage, researchers

simply consider a single-user scenario. In general, cloud
storage is amulti-user scenario, andmulti-user ORAMseems
more reasonable. However, there are several challenges need
to be addressed, such as access control, data integrity protec-
tion, and accountability [15]. We introduce some existing
work of ORAM with access control and accountability for
ORAM in the following. We found some interesting work to
use the blockchain technology to address the cloud account-
ability issue, and inspired by those work, as we introduced
in the third subsection.
7.1. ORAM with Access Control

While some ORAM constructions achieve cloud storage
for multiple users [50, 45, 4, 38], a few of them are suitable
to share data with potentially distrustful clients. D-ORAM
proposed by Franz1 et al. [18] is the first ORAM construc-
tion with access control, which realized the control of ac-
cess rights for users to read, write and insert data based on
symmetric encryption and signatures. In D-ORAM, data in-
tegrity is checked by the data owner alone. The corrupted
data is simply discarded when detected, and no accountabil-
ity measures are taken to identify malicious users. Huang
and Goldberg [21] proposed a scheme that combines PIR
(Private Information Retrieval) [12] with ORAM. In their
scheme, the data owner publishes data to the cloud through
ORAM scheme, and users access data through PIR scheme,

and this scheme can only realize access control of users’
read operation. Pujol and Thorpe [35] use an additive homo-
morphic encryption scheme [48] and chameleon signatures
[26] to achieve a multi-party data access scheme called Dog
ORAM.A trusted authentication server stores an access map
that maintains access right vector of every user. The scheme
uses a double homomorphic selection on a server to obliv-
iously control the permissions, and uses a chameleon sig-
nature scheme to authenticate access rights. Unauthorized
access in the system is no need to be detected. GORAM pro-
posed by Maffei et al. [28] uses predicate encryption to con-
trol user’s read and write permissions, and users in the sys-
tem have to prove to the server that the operations performed
on the database are correct through Zero-Knowledge proofs
of shuffle. The scheme has achieved a wide range of security
properties, but there is a performance cost. PIR-MCORAM
proposed by Maffei et al. [29] is inspired by D-ORAM, and
its access control is achieved based on public-key encryption
and PIR. For data integrity protection, users in their system
have to use zero-knowledge proof to prove that they have the
right to modify the blocks that they accessed, or they only
have re-randomized the blocks.

The above papers explored somany cryptographic schemes
to achieve access control inmulti-user ORAM, however, many
of them are complex and not easy to be implemented. In our
work, we use broadcast encryption to achieve access control,
which is particularly well suited at a large amount of users
scenario and is easier to be implemented.
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7.2. Accountability for ORAM
To the best of our knowledge, there is only one paper

in this line of research takes into accountable obliviousness,
which is S-GORAM proposed by Maffei et al. [28]. This
scheme implements access control based on broadcast en-
cryption, and data integrity protection based on chameleon
signatures. For accountability, they use a log in the cloud
server side to record the users’ access historywhich inevitably
sacrifices system storage and time overhead.

Although S-GORAMhas achieved accountability scheme
for ORAM, its motivation is that the obliviousness prop-
erty of ORAM facilitates the untrusted users tampering with
data, and this is different from the motivation of traditional
cloud accountability that the cloud server is untrusted. May-
berry1 et al. [5] proposed several new multi-user ORAM
constructions to resist the malicious server, but their attack
scenario is that the server would rewind the data to get user
access pattern, and not the traditional problem that the un-
trusted cloud server would destroy data because of hardware
failure or damage from internal staff, which is the focus of
our work.
7.3. Blockchain-based Data Accountability

Traditional data integrity auditing and accountability are
performed by a trusted third party (TTP), while it is very dif-
ficult to establish trust directly between two unfamiliar en-
tities. Blockchain can solve the problem of trust between
nodes in the decentralized system through the verification
and consensus mechanism of distributed nodes, and it is very
appealing to apply blockchain in the filed of data account-
ability.

Damiano et al. [27] proposed a blockchain-based access
control scheme based on the Attribute-based Access Con-
trol (ABAC) model. In their scheme, blockchain is used in-
stead of traditional relational databases to store access con-
trol strategies, and access control strategies are managed in
the form of transactions. Their scheme has realized a dis-
tributed and tamper-resistant log audit function, to prevent
participants from fraudulently refusing to recognize the rights
granted by the strategy. Ricardo et al. [32] proposed a data
management and control method based on blockchain. The
method relies on the use of Publicly Auditable Contracts,
a public audit contract deployed on a blockchain. In their
scheme, data control strategies are written into the smart
contract, and the smart contract automatically tracks data
sources and logs the data usage process, thus increasing trans-
parency in data usage and access. ProvChain proposed by
Liang et al. [25] uses blockchain technology to build a de-
centralized and trusted architecture of cloud data provenance
which is crucial for data accountability. The architecture
makes the operation records with an unalterable timestamp,
and generates blockchain receipts of data records for vali-
dation. The verification process is achieved by an auditor.
Gabriele et al. [14] built a "flight data recorder" for cloud
accountability based on blockchain. Their scheme logs all
the interactions between users and the cloud into the dis-
tributed ledger of blockchain, and the ledger can be used

to verify if Service Level Agreements (SLAs) are violated.
For accountability, the self-enforcing smart contract in their
scheme can automatically identify responsibilities and settle
disputes.

Generally, blockchain-based data accountability is built
on the trustworthiness and tamper-proof properties of blockchain,
and the usage of the smart contract which is automatically
executable and enforceable by nodes makes the dispute res-
olution more efficient. But the existing work has not hidden
the user’s access pattern, which makes them not suitable for
ORAMconstruction. In our work, we give full consideration
to this problem, and carefully design the data structure in
blockchain and the policies in the smart contract, to achieve
a comprehensive accountability scheme in our system.

8. Conclusion and Future Work
In this paper, we detailedly analyze the accountability

problems in multi-user ORAM and the weakness of the ex-
isting solutions. Then, we propose T-ORAM under a gen-
eral threat model by combining the group signatures with
the oblivious RAM.Moreover, under a stronger threat model
that the cloud server may be misbehaving, we further pro-
pose a blockchain-based accountability scheme for multi-
user oblivious RAM,BT-ORAM.Comparedwith T-ORAM,
BT-ORAM can detect both the malicious user and malicious
cloud server. Finally, we respectively implement these two
schemes. Experimental results show that T-ORAM is more
efficient than the existing solution while BT-ORAM is more
secure than others. These two approaches can be applied
universally to any tree-basedORAMscheme. Noted that one
critical point of BT-ORAM is its performance is related to
the performance of the blockchain framework which is not
focused in this paper. As future work, in reference to the
above performance enhancement technologies, we will ex-
plore the performance improvement of BT-ORAMby speed-
ing up the performance of the blockchain framework.
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