
PTS-Dep:A High-Performance Two-party Secure Deduplication for Cloud Storage

Wenlong Tian 1,2, Ruixuan Li 1, Weijun Xiao 2, and Zhiyong Xu 3,4

1School of Computer Science and Technology, Huazhong University of Science and Technology, China
2Electrical and Computer Engineering, Virginia Commonwealth University, USA

3Math and Computer Science Department, Suffolk University, USA
4Shenzhen Institute of Advanced Technology, Chinese Academy of Science, China

Abstract—In cloud storage, the message-locked encryption
method is widely used in security deduplication. However,
Brute force attack becomes a serious issue. Current research
addresses the brute force attack problem in secure dedupli-
cation using a third-party model. Even though there is a
trusted third party in real life, it is hard to be applied to
traditional two-party based deduplication system which only
includes the client and the storage provider. It is obvious
that industries prefer to take the simpler and more practical
secure architecture under the same level of security. However,
the existing two-party secure deduplication approaches either
have inferior performance or security holes. To make the two-
party secure deduplication comparable in performance with
unprotected baseline and keep the same level security with the
existing two-party secure deduplication, we propose a high-
performance two-party secure deduplication, PTS-Dep. By
leveraging secure duplicate data detection scheme and secure
duplicate data’s key sharing scheme, PTS-Dep can perform
data deduplication with the security guarantee. Our approach
improves average deduplication performance up to 92% for
Fslhome workloads compared to previous secure deduplication
schemes when the average chunk size is 12KB.

Keywords-Secure Deduplication; Two-Party; Secure Privacy
Sharing; Secure Duplicate Data Detection

I. INTRODUCTION

As the popularity of cloud storage increases, more and

more people prefer to outsource personal data through cloud

storage service for flexibility and reliability. There are a

large number of redundant data across users. Cloud storage

providers take traditional deduplication methods to remove

redundancy to utilize storage space efficiently. However,

performing data dedupliaction on plaintext will have in-

formation leakage. Even though a user can encrypt their

data by their own key to protect privacy, it sacrifices the

deduplication capability of cloud storage because the same

plaintext may have different ciphertext.

In order to close the gap between security and data

deduplication, Bellare el at. propose the message-locked en-

cryption(MLE) Scheme [1]. The key, in MLE scheme, used

for encryption and decryption is derived from the content,

which allows data deduplication on ciphertext space [2],

[3], [4], [5], [6], [7], [8], [9]. Obviously, the same content

data, even uploaded by different user, has an equivalent

encryption key, and vice versa. However, message-locked

encryption is easily attacked by brute force attacks, since

it is keyless that the ciphertext’s encryption key is derived

from plaintext content. Once attackers acquire a low entropy

template of target ciphertext, it can guess plaintext from the

template. Then, attackers can generate an encryption key

for each guessing based on MLE Scheme. After encryption

for each guessing plaintext by the corresponding generated

encryption key, attackers can compare their cipertext with

the target ciphertext. Once found an equal one, the target’s

plaintext is hacked.

To resist brute force attacks, the server-aid scheme is pro-

posed in [10] to encrypt under message-based keys obtained

from a trusted key-server via oblivious PRF protocol. It can

achieve a high security as long as the key server remains

inaccessible to the attacker. However, When the key server

is compromised with others, the security in Dupless[10] will

be degraded to message-locked encryption that cannot resist

brute force attacks. Some other previous efforts are also

trying to solve this problem [11], [12], [13], [14], [15], [16],

[17]. These research work can generally be categorized into

two types of architectures, third-party and two-party models.

The third-party model includes clients, a storage provider,

and a third trusted key server. The second one only contains

the clients and server.

Actually, no third party can be trusted as Bruce Schneier

has pointed out, after the 2013 mass surveillance disclosures

[18]. What’s more, the existing well-known cloud storage is

doing deduplication based on two-party model only includ-

ing the client and server. Storage providers would like to

choose an easily deployment without changing the existing

architecture while considering the same level of security.

However, the existing work in two-party secure dedupli-

cation is not feasible due to low performance or security

holes. Liu el at. proposes a scheme to directly do dedupli-

cation between clients and servers by combining PAKE and

homomorphic encryption method, but the performance will

suffer a lot as the number of users increasing [13]. Yu el at.

proposes an encryption deduplication scheme by combining

Merkle puzzle as a negotiation method between clients and

servers, but there are security holes [16]. Since the duplicate

data detection is done by the client and server together, a

malicious client can utilize the detection process in [16]

700

2018 IEEE 20th International Conference on High Performance Computing and Communications; IEEE 16th International
Conference on Smart City; IEEE 4th Intl. Conference on Data Science and Systems

978-1-5386-6614-2/18/$31.00 ©2018 IEEE
DOI 10.1109/HPCC/SmartCity/DSS.2018.00122

to substitute the ciphertext of a popular file as a malicious

script.

In summary, it is meaningful by considering the practical

deployment in designing the secure deduplication protocol.

But, there is a contradiction between practical implementa-

tion and security. It is because some complex security com-

putation designs greatly degrade the system performance,

which is not practical in real scenarios. In this paper, we

propose a high-performance two-party secure deduplication,

PTS-Dep. The performance of PTS-Dep outperform 92%

in overall performance compared with the latest two-party

secure deduplication mechanism with the same level of se-

curity. Our main contributions in this paper are summarized

as follows:

• Firstly, we identify two main challenges in two-party
secure deduplication by analyzing the existing ap-

proaches. The first challenge is related to practical

secure redundant data detection. The second challenge

is associated with securely and practically sharing re-

dundant data’s key with other data owners.

• Secondly, we propose a practical secure duplicate data
detection scheme. A special data structure in this

scheme can quickly detect redundant data in a secure

way. Moreover, attackers can difficultly do off-line

brute force attacks based on the detection data structure

itself.

• Thirdly, we also propose a practical secure duplicate
data’s key sharing scheme among data owners who do

not need to be always online. Compared with [13], this

method can significantly improve the performance of

two-party secure deduplication.

• Finally, we implement a high performance two-party
secure deduplication scheme, PTS-Dep. We also con-

duct comprehensive experiments to evaluate the perfor-

mance of PTS-Dep. By comparing with the unprotected

baseline [1] and the state-of-the-art two-party secure

deduplication system [13], experimental results show

that our method improves the average performance up

to 92% compared with the state-of-the-art two-party

secure deduplication systems[13] and is close to the

performance of [1].

The rest of the paper is organized as follows. In Section

II, we analyze the problem of the latest secure deduplication

work in the two-party scenario. Then, we propose a solution

for secure deduplication in the two-party scenario in Section

III. Finally, we present experimental results in Section IV.

In Section V, we discuss the related work and conclude the

paper in Section VI.

II. PROBLEM STATEMENT

It is much more difficult to design a two-party scheme

without a trusted key server because there are more security

issues that need to be addressed. For example, an encryption

key sharing process can be applied to the trusted third party

which may prevent user privacy leakage. However, it must

consider an effective and secure protocol to reach the goal

of practical secure key sharing in the two-party scenario. We

summarize the two-party secure deduplication into following

two issues.

The first issue is how to practically do redundant data
detection while also ensure the security? The duplicate
data detection is based on a hash function that is content-

based, in [1]. It will be used as identification for brute

force attack by attackers. To keep the security of redundant

data detection, some random property should be added

into redundant data detection. we called it as key-based.

However, it has an effect on deduplication capability under

two party scenario. Different clients will generate different

random property for each block. Even though previous work

[13] adds random property into duplicate data detection,

the redundant data detection is done based on the online

collaborative computation between multi-clients and server.

It is obvious that requiring the data owners always online is

not practical in reality.

The second issue is how to securely share the duplicate
data’s encryption key with other corresponding data
owners while also taking the system performance into
consideration? Since distinct clients have different encryp-
tion key for each chunk, data owner needs to share the

corresponding encryption key with other data owners who

also own the redundant chunk under two-party scenario.

Otherwise, other data owners cannot decrypt the ciphtertext

of redundant chunk. What’s more, if a securely sharing

process suffers the system a lot, it is not acceptable for

practical implementation even though it can hold the security

property. For example, in [13], Password Authenticated Key

Exchange(PAKE) method is used to exchange the user’s

encryption key among the data owners. However, PAKE will

lead to a lot of TCP traffic when performing block-level

deduplication with large number of users. Even though it

proposes a checker scheme to certainly decrease the over-

head of PAKE, it can not fundamentally prevent performance

degradation caused by PAKE.

A. Challenges in Designing Secure Deduplication

In this subsection, we summarize the challenges in design-

ing secure deduplication. Then, we compare our scheme with

existing secure deduplication efforts in Table I. It is noted

that the threat model of PTS-Dep is the same as the security

model in [13].

1) Independent Trusted Server Assumption(C1): Choos-

ing two-party model or three-party secure deduplica-

tion model directly impacts the following detailed de-

signing consideration. ”—” denotes three-party model.

”
√
” means two-party model.

2) Brute Force Resilience without Security Hole: Turning

the keyless property to key-based property is the core

idea to resist brute force attack. ”—” denotes it exist

701

Table I
THE STATE-OF-THE-ART CLASSIFICATION

Methods C1 C2 C3
CE[11] & MLE[1]

√
—

√
tCE[15] —

√
—

DupLESS [10] —
√

—
EwS[12] —

√
—

ClouDedup [14] —
√ √

SVCDedup[17] —
√

—
PAKEDedup [13]

√ √
—

XDedup [16]
√

—
√

PTS-Dep
√ √ √

Table II
NOTATIONS

Notation Description

kg Message-locked encryption key for chunk g
kf Message-locked encryption key for chunk f
Ef the ciphertext of chunk f
rm1 the first random number at m-th time
rm2 the second random number at m-th time
rn1 the first random number at n-th time
rn2 the second random number at n-th time
sh(kf) the short hash of kf
V itemf the validation data structure for f
Transf the data structure for transferring privacy with those

who has the same chunk with f
S Transf part of Transf which is stored at server
p the 1024-bit prime number which is public
Tag(Ef) the hash value of Ef
S a collection that each Vitemi element has the same

short hash, sh(ki)
φ(n) number of all positive integer up to a given integer n

that are relatively prime to n

some problems in Brute Force Resilience without

Security Hole. ”
√
” means it can securely handle brute

force attack.

3) Interaction Complexity & Computation Difficulty(C3):

Performance is an important issue as security in secure

deduplication. Interaction complexity and computation

difficulty is the main impact factors in performance.

”—” denotes the complicated interaction & computa-

tion. ”
√
” means simple interaction & computation.

III. PROPOSED SCHEME

A. Overview of PTS-Dep

The workflow of PTS-Dep is shown in Figure 1. To

simplify the discussion, we denote entities in our scheme as

Table II. Since the whole system performs the block-level

deduplication, each file is split into chunks at the client side.

Only the unique chunk will be stored at the server. Then,

we study the following two major chunk operations: upload

and restore.

When client i uploads a chunk f , the message-locked
encryption key kf and two random numbers , rm1 and

rm2, are generated where kf = Hash(f). In addition,
data structures V itemf and Transf corresponding for f

are produced locally based on kf ,rm1 ,rm2 and p where
p is a public large prime number. The detailed calculation

process is discussed in subsection III-B and III-C. Then,

client i sends V itemf and S Transf , part of Transf , to
the server. Next, the server filters out a small collection S

based on the short hash section in V itemf . The short hash

is generated by choosing the first fixed number of bits of

kf , which denotes as sh(kf). Each item x in S will have a
corresponding V itemx and S Transx.
Therefore, the server securely determines whether f is

a unique chunk or not by secure duplicate data detection

scheme. Once f is a unique chunk, the server store V itemf

and S Transf in the server. Then, client i generate a
new key-based encryption key by Xor(kf ,rm2%p) where
”Xor” denotes an exclusive or function and ”%” denotes

the modulation operation. The ciphertext of chunk f, Ef ,

is produced by symmetrically encryption based on the new

key-based encryption key. After calculating the tag Tag(Ef),

client updates the file metadata and uploads the Ef and

Tag(Ef) to the server. If f is a duplicate chunk, the server
sends the S Transg and Tag(Eg) to client i, where chunk
g is the same as f . Then, client i can acquire the key-
based encryption key of g by secure key sharing method
based on Transf and S Transg , which will be discussed
in Subsection III-C.

When client i restores chunk f , the ciphertext of f
is downloaded firstly based on the metadata. Then, the

plaintext of f can be achieved by decryption with the
corresponding encryption key. When dealing with restoring

file, it can restore the file based on chunk sequence after

achieving each chunk’s plaintext. Since we do not focus on

the key management issue in this paper, we assume that all

keys for files and chunks are stored at the client side. It

is noted that our proposed method is compatible with the

randomize method proposed by [10] and [13].

B. Practical Secure Duplicate Data Detection Scheme

In this subsection, we present a practical secure dupli-

cate data detection method by proposing a data structure

V item. The V item is combined based on the modular

property[19], Euler’s totient function[20] and discrete loga-

rithm problem[21] together.

As shown in Figure 2, there are six parts in V itemf for

a chunk f . Note that, kf is generated by SHA-256 hash
with the chunk content. Two random numbers, rm1 and rm2,

are generated based on Guassian distribution and the range

of values is (2256 − 1,+∞). The reason why keeps each
random number larger than kf is to guarantee the correctness
of secure duplicate data validation method. The first part

sh(kf) is used to reduce the search scope in duplicate data
detection process because the redundant chunks have the

same short hash of kf . While the other parts is constructed
based on Euler’s totient function[20] and discrete logarithm

problem[21].

702

Figure 1. The Workflow of PTS-Dep

The first reason why we design V itemf as Figure 2 is

to avoid others doing brute force attack based on these

data structure by adding the random property into each

part of V itemf except the sh(kf). For example, directly
based on sh(kf) can not determine the kf because of the
remainder bits of kf is unknown. Attackers can difficultly
figure out random information from each part in V itemf , or

by solving the solutions of constructing equations based on

V itemf . Noted that, when p is 1024-bit or more, the discrete

logarithm problem is difficult to be solved by conventional

computer. φ(p) equals to p − 1 since p is a large prime
number.

1 2 3

4 5

6

Figure 2. Vitem Data Structure

The second reason is that server can quickly determine

whether f is a unique chunk or not based on our design.
For simplicity, we assume there is a unique chunk g stored

at server which is uploaded by client j. Then, client i uploads

a chunk f to the server. As shown in Figure 3, the V item
data structure of chunk g and chunk j are (f2,f4,f6,f8,f10)
and (f1,f3,f5,f7,f9), respectively. When client i uploads
the V itemf to server, V itemg will be in the collection S

since sh(kg) is equal to sh(kf). Then, the server calculates
(result1,result2) based on Formulas 1 and 2. If f is a
duplicate chunk for g, (result1,result2) must be equal to
(1,1). If not, (result1,result2) should not be equal (1,1).

result1 = (((((f4
f1+φ(p)%p ∗ f5−f2+φ(p)%p)%p

∗ f8f9+φ(p)%p)%p ∗ f6f1+φ(p)%p)%p

∗ f3−f2+φ(p)%p)%p ∗ f7−f10+φ(p)%p)%p

(1)

result2 = (((((f3
f2+φ(p)%p ∗ f6−f1+φ(p)%p)%p

∗ f7f10+φ(p)%p)%p ∗ f5f2+φ(p)%p)%p

∗ f4−f1+φ(p)%p)%p ∗ f8−f9+φ(p)%p)%p

(2)

Chunk g

f1 f3

f9f7

f5

f6f4f2

f8 f10

Chunk f

Figure 3. Vitem Example for Chunk f and Chunk g

C. Practical Secure Duplicate Data’s Key Sharing Scheme

In this part, we propose a practical secure duplicate data’s

key sharing scheme. For each unique chunk, data owner

uploads their S Trans data structure into server. Once other
clients uploads a duplicate chunk, the key-based encryption

key of the duplicate chunk can be quickly shared among

data owners. However, server can not figure out the random

information in key-based encryption key by S Trans data
structure. What’s more, there is no need to be online state for

data owners compared with [13] during this sharing process.

703

A

C’

B C

A’ B’

Stored at Server for each unique data Stored at Client

Figure 4. Trans’ Data Structure

(A ∗BC′+φ(p))%p = rm2%p (3)

Specifically, we assume that client i uploads chunk g while

the chunk f, uploaded by other client, is already stored at

server. And g is the replicate chunk for f. As shown in

Figure 4, the data structure of key sharing scheme has three

parts. We denote that Transg is (A
′,B′,C ′) and S Transg

is (A′,B′) while Transf is (A,B,C) and S Transf is
(A,B). It is note that server can only learn the S Trans
part since only S Trans part is stored at server. When
client i is notified by server that f is a redundant chunk for

g based on practical secure duplicate data detection scheme,

S Transf is sent to client i. Note that, kg is equal to kf
in Transf and Transg at this time. Based on Formula 3,
client i can calculate the value of rm2%p. Then, the key-
based encryption key can be derived from Xor(kf ,rm2%p).

IV. PERFORMANCE EVALUATION

A. Methodology

Experimental Setup All the experiments are conducted
on a distributed platform. Each client is equipped with an

Intel(R) Core(TM) i7-4790 @3.60GHz 8 core CPU, 16GB

RAM, a 500GB 5400 rpm hard disk and is connected to

a 100Mbps network. To compare proposed PTS-Dep with

other schemes, we perform experiments on four datasets, in-

cluding Linux Kernel [22], Fslhome [23], the video datasets

[24] and Audio datasets [25]. We evaluate the performance

of PTS-Dep compared with PAKE-based two-party secure

deduplication [13](PAKE-SD) and the MLE two-party se-

cure deduplicate [1](MLE-SD). It is because PAKE-SD is

the state-of-the-art two-party secure deduplication system.

And MLE secure deduplication system is treated as the

unprotected baseline of two-party secure deduplication.

Metrics we identified the following metrics to evaluate
proposed scheme. 1) Building Data Structure: Different
systems have various cost for constructing data structures.

This metric is to measure time consumption in constructing

data structures. Note that, the data structure in PTS-Dep

includes V item and Trans. 2) Building MLE key: it

Figure 5. The Performance of Linux Workloads

Figure 6. The Performance of Fslhome Workloads

denotes the time consumption of producing message-locked

encryption keys. 3) Validation Comp: it means the time
consumption for duplicate data’s detection and duplicate

data’s key sharing. 4) Encryption: we use this metric to
gather statistics of all unique chunks’ encryption time by

the key-based encryption. 5) Compute Tag: it denotes the
time consumption by calculating the file and chunk’s tag. 6)
Chunking: the time consumption of chunking process in the

system.

B. Numerical Results and Discussions

Firstly, we conduct the experiments in Linux workloads.

As shown in Figure 5, the overall time consumption for each

method decreases as the average chunk size changed from

3KB to 12KB. It is because the larger average chunk size

it has, the less chunk number it generates. However, our

scheme can have a close performance with the unprotected

baseline, MLE-SD, which outperforms PAKE-SD under

Linux workloads. For example, the overall time cost in

704

PAKE-SD costs is about 32 times as much as PTS-Dep

when average chunk size is 3KB. Even though overall time

consumption of each method is decreasing as the increase of

average chunk size, the overall time consumption of PAKE-

SD is still about 22 times as much as our scheme when the

average chunk size is 12KB.

The reason is that too much Password Authenticated Key

Exchange process occur in PAKE-SD even though it has

a checker Selection scheme. Note that, PAKE procedure

need two participants to do online interactive which need at

least two TCP/IP handshaking. Once a corresponding short

hash item is found in PAKE-SD, the uploader will initiate

a PAKE procedure with other clients(at least one client).

Furthermore, there are many duplicate chunks in Linux

workloads. Hence, there will cost a lot in PAKE procedure.

However, the performance of PTS-Dep is independent of

the number of chunks, which is consistent with the MLE-

SD’s performance. Hence, Our scheme not only has a better

performance than PAKE-SD, but also is very close with

baseline in performance under Linux workloads.

Secondly, we also measure the performance of Fslhome

workloads. As shown in Figure 6, similar to the Linux

workloads, the time consumption of Validation Comp in

PAKE-SD becomes the main cost in the whole overhead

because of the password authenticated key exchange prop-

erty that we mentioned before. Even though the overall

time consumption of PAKE-SD decreases as the increase

of average chunk size, the time cost of PAKE-SD is still too

much. For example, the overall time consumption of PAKE-

SD is 11 times as much as our scheme when average chunk

is 12kB. More specifically, the time cost of Building Data

Structure and Validation Comp parts in PTS-Dep is less than

the corresponding part in PAKE-SD. As shown in Figure 6,

the time consumption of building validation structure and

validation in PTS-Dep only takes 6% compared with the

unprotected baseline, MLE-SD. Consequently, Our scheme

has the extraordinary performance compared with PAKE-SD

under the Fslhome workloads.

Thirdly, we also perform the experiments under the audio

workloads and video workloads to simulate the performance

under the low dedup ratio scenario. Figures 7 and 8 show

the results under the audio workloads and video workloads,

respectively. From Figure 7, we can find out that the

performance of PAKE is almost the same with unprotected

baseline, MLE-SD. The reason is that the audio workload

has very low deduplication ratio. In other words, most of

the uploading chunks are unique chunks. Hence, PAKE-SD

will not bring too much PAKE procedures to sharing privacy

among clients. Fortunately, the performance of our method is

very close to the performance of baseline. Even the time cost

of Building Data structure part is associated with the number

of chunks, it is always less than the time consumption of

Building MLE key part.

Finally, we measure the time consumption of Validation

Figure 7. The Performance of Media(audio) Workloads

MLE-
SD

PTS-
Dep

PAKE-
SD

MLE-
SD

PTS-
Dep

PAKE-
SD

MLE-
SD

PTS-
Dep

PAKE-
SD

3KB 6KB 12KB

Chunking 375 383 385 262 260 263 191 192 196
Compute tag 1 1 1 0 0 0 0 0 0
Encryption 21 19 23 9 10 9 6 6 6
Validation Comp 0 1 699 0 0 308 0 0 110
Building MLE key 143 142 144 77 77 77 39 39 40
Building Data structure 0 56 0 0 30 0 0 14 0

0

200

400

600

800

1000

1200

1400

Ti
m

es
 (

Se
c)

Chunking

Compute tag

Encryption

Validation Comp

Building MLE key

Building Data structure

Figure 8. The Performance of Uploading Media(video) Workloads

Comp when a new client repeatedly uploaded a chunk which

is a duplicated chunk in cloud owned by various client

number. As shown in Figure 9, we can clearly find out that

the time consumption of Validation Comp part in PAKE-

SD is increase sharply as the number of clients who owned

the same duplicate chunk. The cost of validation process in

PAKE-SD is still too expensive when the client number less

than 8 compared with our scheme and MLE-SD. On the

contrary, our-scheme is independent with the client number,

which is the same with the unprotected baseline, MLE-

SD. Consequently, our scheme greatly outperform PAKE-

Scheme and has similar performance with the unprotected

baseline, MLE-SD.

V. RELATED WORK

In this section, we mainly discuss the related work about

secure deduplication. We categorize these related work into

two categories based on whether it has an independent server

as a secure third-party.

705

Figure 9. The Time Consumption of Validate Comp under Various Client
Number

A. Secure Deduplication in Three-Party Model

In three-party secure deduplication, it assumes that exists

a secure third party to be responsible for some secure

process. To against the brute force attacks in secure dedu-

plication, Bellare and Keelveedhi [10] present DupLESS to

keep the key generation securely by introducing a secure

third party server. More specifically, To guarantee that no

one except client itself can derive the convergent encryption

key as an identification during brute force attack, the secure

third-party KS jointly compute a content-dependent key for

every file by using oblivious pseudorandom function(OPRF).

However, when putting the DupLESS into block-level secure

deduplication, the OPRF scheme will dramatically degrade

the whole performance in both clients and the third-party

key server.

Based on the problem in DupLESS, SecDep [26] em-

ploys the User-Aware Convergent encryption and multi-

level key management approaches to speed up the secure

deduplication in third-party model. However, it can only do

cross user’s deduplication in file-level. But, when consid-

ering it into block-level deduplication, only insider user’s

deduplication can work. Even though it proposes some other

contribution in key management, it still not solves the main

problem in DupLESS. Similar to SecDep, a deduplication

proxy sits in the middle of users and the cloud in [27],

where the proxy and cloud perform cross-user deduplication

but the user and proxy perform single-user deduplication.

ClouDedup [14] works in a similar way. Threshold CE

(tCE) [15] and PerfectDedup [28] perform the chunk-level

deduplication by taking advantage of chunk popularity.

B. Secure Deduplication in Two-Party Model

Even though the secure third-party is very common in

security scenario, the existing cloud storage provider is still

not bringing the secure third-party into the deduplication

scenario. In other words, there is only clients and storage

provider in traditional deduplication scenario. Therefore,

Storage provider rated considerations such as ease of deploy-

ment, when selecting a deduplication scheme. Consequently,

some other work are dedicated to removing the third party

in secure deduplication. Encrypt-with-Signature (EwS) [12]

claims to eliminate the need for a key server and retain the

security guarantee by using threshold signatures. Nonethe-

less, Zheng [17] argued that the dealers in EwS serve as the

similar role of the key server in DupLESS.

Recently, Liu et al[13] propose PAKEDedup. It com-

bines the Password Authenticated Key Exchange method

and homomorphic encryption method to resist brute force

attacks in the two-party scenario. However, it will degrade

the secure deduplication performance since each duplication

data’s judgment at least cause a PAKE process. The situation

becomes serious when considering it into block-level secure

deduplication. Based on the PAKE performance problem,

Xdedup[16] attempts to improve the performance of PAKE

by introducing the symmetric encryption method into secure

deduplication. However, there exist some security holes.

since it move part of duplicate data detection process into

client-side, malicious user can utilize this scheme substitute

the other’s uploaded data.

VI. CONCLUSIONS

In this paper, we summarize two critical issues by an-

alyzing the problems in two-party secure deduplication.

Then, three challenges are proposed around the practical

implementation and the security. To securely and practically

detect duplicate data and share the secret key in two-

party secure deduplication scenario, we propose a high

performance two-party secure deduplication, PTS-Dep. Fur-

thermore, experimental results show that our scheme greatly

improves the average deduplication performance up to 92%

in Fslhome workloads. Additionally, PTS-Dep not only

ensures the security, but also has a great improvement in

performance compared with other previous two-party secure

deduplication schemes.

VII. ACKNOWLEDGEMENT

This work is supported by the National Key Re-

search and Development Program of China under grants

2016QY01W0202 and 2016YFB0800402, National Natu-

ral Science Foundation of China under grants 61572221,

U1401258, 61433006 and 61502185, Major Projects of the

National Social Science Foundation under grant 16ZDA092,

Science and Technology Support Program of Hubei Province

under grant 2015AAA013, Science and Technology Program

of Guangdong Province under grant 2014B010111007 and

Guangxi High level innovation Team in Higher Education

InstitutionsInnovation Team of ASEAN Digital Cloud Big

Data Security and Mining Technology. This work is also

706

partly supported by the National Science Foundation under

grant CNS 1526190.

REFERENCES

[1] M. Bellare, S. Keelveedhi, and T. Ristenpart, “Message-
locked encryption and secure deduplication,” in Annual In-
ternational Conference on the Theory and Applications of
Cryptographic Techniques. Springer, 2013, pp. 296–312.

[2] A. Adya, W. J. Bolosky, M. Castro, G. Cermak, R. Chaiken,
J. R. Douceur, J. Howell, J. R. Lorch, M. Theimer, and
R. P. Wattenhofer, “Farsite:federated, available, and reliable
storage for an incompletely trusted environment,” Acm Sigops
Operating Systems Review, vol. 36, pp. 1–14, 2002.

[3] P. Anderson and L. Zhang, “Fast and secure laptop backups
with encrypted de-duplication,” in International Conference
on Large Installation System Administration, 2010, pp. 1–8.

[4] J. Cooley, C. Taylor, A. Peacock, and F. Project, “Abs: the
apportioned backup system,” Proceedings of the Csee, vol. 31,
no. 7, pp. 112–118, 2011.

[5] A. Zisman, “A static verification framework for secure peer-
to-peer applications,” in International Conference on Internet
and Web Applications and Services (ICIW 2007), May 13-19,
2007, Le Morne, Mauritius, 2007, p. 8.

[6] L. Marques and C. J. Costa, “Secure deduplication on mobile
devices,” in Proceedings of the 2011 workshop on open source
and design of communication. ACM, 2011, pp. 19–26.

[7] A. Rahumed, H. C. Chen, Y. Tang, P. P. Lee, and J. C. Lui,
“A secure cloud backup system with assured deletion and
version control,” in Parallel Processing Workshops (ICPPW),
2011 40th International Conference on. IEEE, 2011, pp.
160–167.

[8] M. W. Storer, K. Greenan, D. D. Long, and E. L. Miller,
“Secure data deduplication,” in Proceedings of the 4th ACM
international workshop on Storage security and survivability.
ACM, 2008, pp. 1–10.

[9] Z. Wilcox-O’Hearn and B. Warner, “Tahoe: the least-authority
filesystem,” in Proceedings of the 4th ACM international
workshop on Storage security and survivability. ACM, 2008,
pp. 21–26.

[10] M. Bellare, S. Keelveedhi, and T. Ristenpart, “Dupless:
Server-aided encryption for deduplicated storage.” IACR
Cryptology ePrint Archive, vol. 2013, p. 429, 2013.

[11] J. R. Douceur, A. Adya, W. J. Bolosky, D. Simon, and
M. Theimer, “Reclaiming space from duplicate files in a
serverless distributed file system,” in International Conference
on Distributed Computing Systems, 2002, pp. 617–624.

[12] Y. Duan, “Distributed key generation for encrypted dedupli-
cation: Achieving the strongest privacy,” in Proceedings of
the 6th edition of the ACM Workshop on Cloud Computing
Security, 2014, pp. 57–68.

[13] J. Liu, N. Asokan, and B. Pinkas, “Secure deduplication
of encrypted data without additional independent servers,”
in Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security, 2015, pp. 874–885.

[14] P. Puzio, R. Molva, M. Onen, and S. Loureiro, “Cloudedup:
Secure deduplication with encrypted data for cloud storage,”
in Cloud Computing Technology and Science (CloudCom),
2013 IEEE 5th International Conference on, vol. 1, 2013,
pp. 363–370.

[15] J. Stanek, A. Sorniotti, E. Androulaki, and L. Kencl, “A secure
data deduplication scheme for cloud storage,” in International
Conference on Financial Cryptography and Data Security.
Springer, 2014, pp. 99–118.

[16] C.-M. Yu, “Poster: Efficient cross-user chunk-level client-side
data deduplication with symmetrically encrypted two-party
interactions,” in Proceedings of the 2016 ACM SIGSAC Con-
ference on Computer and Communications Security, 2016,
pp. 1763–1765.

[17] Y. Zheng, X. Yuan, X. Wang, J. Jiang, C. Wang, and X. Gui,
“Enabling encrypted cloud media center with secure dedu-
plication,” in Proceedings of the 10th ACM Symposium on
Information, Computer and Communications Security, 2015,
pp. 63–72.

[18] G. Greenwald and E. MacAskill, “Boundless informant: the
nsas secret tool to track global surveillance data,” 2013.

[19] E. Öztürk, B. Sunar, and E. Savas, “Low-power elliptic curve
cryptography using scaled modular arithmetic,” pp. 92–106,
2004.

[20] B. Kaliski, “Eulers totient function,” pp. 430–430, 2011.

[21] P. W. Shor, “Polynomial-time algorithms for prime factoriza-
tion and discrete logarithms on a quantum computer,” SIAM
review, vol. 41, no. 2, pp. 303–332, 1999.

[22] Linux, “The linux kernel archives,” https://www.kernel.org/.

[23] Fslhome, “Traces and snapshots public archive,”
http://tracer.filesystems.org/.

[24] C. Inc, “Coursera,” https://www.coursera.org/.

[25] JAMENDO, “Jamendo music,”
https://www.jamendo.com/start.

[26] Y. Zhou, D. Feng, W. Xia, M. Fu, F. Huang, Y. Zhang, and
C. Li, “Secdep: A user-aware efficient fine-grained secure
deduplication scheme with multi-level key management,” in
Mass Storage Systems and Technologies (MSST), 2015, pp.
1–14.

[27] P. Meye, P. Raipin, F. Tronel, and E. Anceaume, “A secure
two-phase data deduplication scheme,” in High Performance
Computing and Communications, 2014, pp. 802–809.

[28] P. Puzio, R. Molva, M. Önen, and S. Loureiro, “Perfectdedup:
Secure data deduplication,” in International Workshop on
Data Privacy Management. Springer, 2015, pp. 150–166.

707

