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Abstract—Data chunking is one of the most important is-
sues in a deduplication system, which not only determines the
effectiveness of deduplication such as deduplication ratio, but
also impacts the modification overhead. It breaks the file into
chunks to find out the redundancy by fingerprint comparisons.
The content-defined chunking algorithms such as TTTD, BSW
CDC, and RC, can resist the boundary shift problem caused by
small modifications. However, we observe that there exist a lot of
consecutive maximum chunk sequences in various benchmarks.
These consecutive maximum chunk sequences will lead to local
boundary shift problem when facing small modifications. Based
on this observation, we propose a new chunking algorithm, Elas-
tic Chunking. By leveraging dynamic adjustment policy, elastic
chunk can quickly find the boundary to remove the consecutive
maximum chunk sequences. To evaluate the performance, we
implement a prototype and conduct extensive experiments based
on synthetic and realistic datasets. Compared with TTTD, BSW
CDC and RC algorithms, proposed chunking algorithm can
achieve the higher deduplication ratio and throughput.

Keywords: Deduplication; Chunking Algorithm; Boundary Shift;
Content-Defined

I. INTRODUCTION

Data Deduplication is an important technique to improve storage
utilization and save the network bandwidth by significantly removing
the redundant data in cloud storage scenario [1, 2]. There has been
many research done in the literature, such as [3–5], for improving
the performance and efficiency of deduplication. In a deduplication
system, removing the duplicated data is based on the comparison
of data’s fingerprints. If matched, it can be removed as duplicated
data, vice versa. As the core component of deduplication, chunking
algorithm has been extensively studied in recent years.

The basic idea of chunking algorithm is to break large files into
small chunks for detecting data redundancy. As an initial step, fixed-
size chunking algorithm is proposed to quickly split the files into
chunks. In fixed-size chunking algorithm, the size of each chunk is
identical. It can quickly complete the fixed-size chunking process.
However, it is vulnerable by modifications that easily lead to the
boundary shift problem. A small modification causes a lot of unique
chunks. Therefore, fixed-size chunking algorithm is not suitable for
high deduplication ratio datasets.

To solve the boundary shift problem, content-defined chunking
algorithms are proposed to make the chunk boundary related with
the content. When small modifications occur, it does not impact the
decision of chunk boundary. Hence, small modifications do not lead
to the global boundary shift as fixed-size chunking algorithm. As
a classical content-defined chunking algorithm, Muthitacharoen et
al. propose a sliding window(BSW) based content-defined chunking

algorithm [6]. The decision of chunk boundary is determined by
comparing with Rabin-based fingerprints [7] in a sliding window with
the threshold. If the comparison result is satisfied with predefined
condition, the location of sliding window will be chunked as a
boundary. Otherwise, the window on files slides to the next location.
Once no chunk boundary is found, the parameter of maximum chunk
size is applied to generate a forced chunk boundary.

Even though the BSW chunking algorithm prevents the boundary
shift problem compared with fixed-size chunking algorithm to some
extent, it performs poorly on real datasets [8] because of the im-
paction from data’s modification. In other words, it is still possible
to decrease the modification impact by observing the substantial
variance of chunk sizes. Based on quantitative analysis for previous
content-defined chunking algorithms, TTTD suggests that avoiding
too small or too large chunk size can reduce the modification
overhead by theoretical analysis [8]. Based on this scheme, RC further
argues that maximum length chunks will impact deduplication ratio
since it is not content defined [9]. The core idea of RC is to decrease
the maximum length chunks by multi-stage divisor values.

Although RC undoubtedly decreases the number of maximum
chunks, the cost of chunking process is increased by multi-loop itera-
tions to eliminate maximum chunks. What’s worse, it is inaccurate to
eliminate whole max-length chunks since there still have redundancy
among maximum length chunks. Taking extra process to eliminate
these kind of maximum length chunks obviously leads to unnecessary
overhead. However, based on our observation, the main problem for
max-length chunks is the local boundary shift problem that will be
discussed in the next section. Simply decreasing the probability of
maximum length chunks can not effectively resist the local boundary
shift problem. More detailed analysis in Section II.

Yu et al. propose a leap-based CDC algorithm to improve the
deduplication throughput by skipping the unnecessary boundary
decision computation [10]. It replaces the Rabin-based hash method
by the Pseudo-random Transformation to support its leaping property
which does not belong to Rabin-based category. Moreover, it also
does not outperform TTTD deduplication ratios. Note that we only
focus on the Rabin-based CDC algorithms in this paper which finishes
the chunking process without interacting with server. In other words,
chunking algorithm breaks the files into chunks without any help
from the server. The content-defined chunking algorithms based on
Rabin fingerprints include Basic Sliding Window(BSW) CDC [6],
TTTD[8], and RC [9].

As we describe in more detail in Section II, the Rabin-based
CDC algorithms do not consider the local boundary shift problem,
since the probability to generate maximum length chunks during
the chunking process can not eliminated. Even though the idea
of content-defined chunking algorithm is to resist boundary shift
problem, the appearance of maximum length chunks still have a
chance to form small consecutive maximum chunk sequence. The
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probability is related with the parameter setting for each algorithm.
Thus, the more scatter modifications it has on the sequence, the larger
impaction for deduplication ratio it induces in chunking algorithm.
More specifically, once one bit is changed in the first maximum
length chunk in a consecutive max-length chunk pattern, these
small sequences degrade to a local fixed-sized chunking situation.
Unfortunately, the consecutive maximum length chunks result in local
boundary shift problem that is not handled by existing Rabin-based
CDC chunking algorithms.

To investigate local boundary shift problem, we analyze it from
both theoretical and experimental aspects. From the theoretical aspect,
we demonstrate that the probability of maximum length chunks is
changed as the variance of the parameter setting for each algorithm.
Since there exist a large number of chunks, it is impossible to ignore
maximum length chunks. To further illustrate the local boundary shift
problem, we conduct an experimental analysis over a deduplication
dataset. It still has a lot of small consecutive maximum length chunk
sequences after the chunking process. The situation is drastically
aggravated as the increasing number of chunks.

To overcome the local boundary shift problem, we propose a
novel chunking algorithm, Elastic Chunking, to dynamically decrease
the consecutive maximum chunk sequence. Based on this scheme,
comprehensive experiments are performed. Compared with other
algorithms, Elastic Chunking algorithm can effectively handle the
local boundary shift problem. It can also acquire higher throughput
compared with other Rabin-based CDC algorithms. To the best of our
knowledge, we are the first to give out detailed theoretical analysis
about local boundary shift problem and consider the drawbacks
about consecutive max-length chunk pattern in modification situation.
Overall, our contributions are as follows:

• First, we analyze the problem of local boundary shift problem
caused by consecutive max-length chunk pattern from theoret-
ical and experimental aspects. Local boundary shift problem
severely degrade the chunking algorithm and enlarge the im-
paction by modification in online deduplication scenario.

• Second, we summarize two principles to solve the local bound-
ary shift problem and design a novel chunking algorithm, Elastic
chunking, to dynamically eliminate the consecutive maximum
chunk sequences. Our design greatly resists the impacts caused
by local boundary shift problem.

• Finally, we implement chunking algorithms and conduct com-
prehensive experiments to evaluate proposed chunking algo-
rithm. Experiment results show that our new chunking algorithm
can effectively handle the local boundary shift problem.

The rest of the paper is organized as follows. In Section II, we analyze
the local boundary shift problem from theoretical and experimental
aspects. In Section III, we present two principles to overcome the
local boundary shift problem for designing chunking algorithm and
propose our chunking algorithm. Then, in Section IV, we conduct
several experiments to evaluate our chunking algorithm. Section V
will discuss related work and finally, we conclude the paper and give
the future work in Section VI.

II. LOCAL BOUNDARY SHIFT

To understand the local boundary shift problem in this section, we
firstly explain the content-based chunking process and abstract the
local boundary shift problem. Then, we further illustrate the problem
from both experimental results and theoretical analysis.

A. Description of Local Boundary Shift Problem
During the chunking process, a file, which length is larger than

average chunk size, is split into several small chunks. The length
of each chunk is not larger than average chunk size. In Fixed-size
chunking algorithm, a small modification leads to the whole boundary
of each chunk shift to a new place. Therefore, the duplicate parts is
treated as a new chunk after modification because of the boundary

TABLE I: consecutive max-length pattern statistics

Consecutive Pattern Count
≥ 1000 1

< 1000&& ≥ 500 3
< 1000&& ≥ 500 93
< 100&& ≥ 10 3184
< 10&& ≥ 5 5142
< 5&& ≥ 2 26606

= 1 90807

shift. This issue is called boundary shift problem. Even the existing
rabin-based CDC algorithms can solve this problem, we observe that
exist a lot of small consecutive maximum length chunk sequences
in the chunking process. Moreover, the deduplication ratio after
modification has a severe degradation. For example, during chunking
process, the chunk results are ck1,ck2,ck3 · · · ckn, where ck2 to ckn
are max-length chunks. Once a small modification affect the ck2’s
boundary decision, the boundary from ck2 to ckn must be changed.
Then, the situation is similar to the fixed-size chunking which can
be easily impact by small modifications.

The reason for local boundary shift problem is the maximum
chunk size parameter in CDC chunking algorithm. The original goal
of maximum chunk size parameter is to decrease the modification
impact for deduplication ratio and in case of large chunk size.
However, the existing Rabin-based CDC algorithms can not eliminate
the probability of max-length chunk during chunking process, even
though different parameters setting in chunking algorithm will impact
the probability of max-length chunks, which will be justified shortly.
When a maximum length chunk is adjacent to the other new maxi-
mum length chunk, it consists a two consecutive max-length chunk
sequence. Furthermore, the situation becomes more severe when there
exist too many sporadic consecutive max-length chunk sequences.

B. Experimental Observation
To show the existence of consecutive max-length chunk sequences,

we take a vmdk file as an original file which size is 4.58 GB. Then,
it is split by TTTD chunking algorithm. In Table I, the consecutive
pattern denotes the number of maximum length chunk in a sequences.
Count means the number of sequence which belongs to the same
consecutive pattern. Then, we counted the number of the consecutive
max-length chunk sequence in various consecutive pattern conditions.
The reason why we choose the vmdk is that this type of file is very
common in both our daily life and deduplication system. Table I
shows results based on different patterns after the process of vmdk.

As shown in Table I, we can learn that the consecutive max-
length pattern phenomenon is very common in realistic datasets.
Although the occurrences of consecutive max-length pattern are few
when the consecutive pattern larger than 500, there are much smaller
consecutive max-length pattern occurs when the pattern less than 100.
As we describe more detail in Section IV, we also use the synthetic
workloads to simulate the extreme impacts by local boundary shift
problem. When considering the local boundary shift problem in BSW
Chunking algorithm, the situation is even worse.

C. Theoretical Analysis
Based on above observations, we further explore the local bound-

ary shift problem from theoretical analysis. It is noted that the
deduplication ratio for each chunking algorithms in our discussions is
no more than using TTTD paradigm which includes RC. Therefore,
we choose BSW and TTTD for the theoretical analysis. For BSW
chunking algorithm, there are three parameters such as the maximum
chunk size L2, the minimum chunk size L1, and divisor value D.
x is the difference of L2 and L1. There is a sliding window which
slides from each file’s beginning to the end. Then, the CDC chunking
algorithm calculates the hash value based on the content of the sliding



TABLE II: Probability Distribution of BSW Chunking Algorithm

0 1 2 3 · · · x-2 x-1 x
µ L1 L1 + 1 L1 + 2 L1 + 3 · · · L2 − 2 L2 − 1 L2

µ2 L2
1 (L1 + 1)2 (L1 + 2)2 (L1 + 3)2 · · · (L2 − 2)2 (L2 − 1)2 (L2)2

p 1
D

(1− 1
D
) 1
D

(1− 1
D
)2 1

D
(1− 1

D
)3 1

D
· · · (1− 1

D
)(L2−L1−2) 1

D
(1− 1

D
)(L2−L1−1) 1

D
(1− 1

D
)(L2−L1)

TABLE III: Probability Distribution of TTTD Chunking Algorithm

0 1 2 · · · x-2 x-1 x
µ L1 L1 + 1 L1 + 2 · · · L2 − 2 L2 − 1 L2

µ2 L2
1 (L1 + 1)2 (L1 + 2)2 · · · (L2 − 2)2 (L2 − 1)2 (L2)2

P p0 p1 p2 · · · px−2 px−1 px

PD1
1

D1
(1− 1

D1
) 1
D1

(1− 1
D1

)2 1
D1

· · · (1− 1
D1

)(x−2) 1
D1

(1− 1
D1

)(x−1) 1
D1

(1− 1
D1

)(x)

PD2 (1− 1
D2

)(x) (1− 1
D2

)(x−1) 1
D2

(1− 1
D2

)(x−2) 1
D2

· · · (1− 1
D2

)2 1
D2

(1− 1
D2

) 1
D2

1
D2

window. if the remainder of the hash value and divisor value D is
equal to a predefined threshold, the position of sliding window is set
as a chunk boundary. Otherwise, the sliding window moves forward
one bit. Furthermore, the chunk process repeats the above calculations
until finding a suitable boundary. When there is no chunk boundary
found until reaching the maximum chunk size position, the position
of maximum chunk size is set as a forced boundary. Based on BSW
chunking algorithm, we defined the probability of choosing L1 as the
chunk boundary is 1

D
in the initial step. the probability of L1 + 1 as

chunk boundary is (1− 1
D
) ∗ 1

D
. As the sliding window moves to

the end of file, the probability that L1 + i is set as a chunk boundary
is (1− 1

D
)i ∗ 1

D
. Table II shows the discrete probability distribution

for BSW chunking algorithm where x equals the difference of L2

and L1.
Similar to BSW CDC chunking algorithm, we also build the

probabilistic distribution for the TTTD algorithm. Table III shows
the discrete probabilistic distribution of TTTD chunking algorithm
that has four parameters. L1 denotes the minimum chunk size and
L2 is the maximum chunk size, x equals to the difference value of
L1 and L2. D1 means the main divisor value of TTTD algorithm
and D2 is the second divisor value. We denote Pi as the probability
where L1 + i bit is chosen as a chunk boundary. Pi equals to
PD1 +(1− 1

D1
)xPD2 when the chunk is a normal chunk. When the

chunk size is maximum length, the probability of Pi is (1− 1
D1

)x 1
D2

.
From Table II and III, the probability of max-length chunk

is (1− 1
D
)(L2−L1) in BSW CDC chunking algorithm and

(1− 1
D1

)x 1
D2

in TTTD chunking algorithm, respectively. Obviously,
the probability of maximum length chunk is related with the chunking
algorithm’s parameters. For example, the probability of max-length
chunk, pmax, is about 35.9% in BSW when D is 2000 and x equals
to 2048. As for TTTD, when x equals 2048, D1 is 2000 and D2

is 1000, pmax equals to 3.59%. Hence, pnmax is the probability
of consecutive max-length pattern where n means the number of
max-length chunks in a consecutive max-length. Since Pn

max is less
than P

(n−1)
max , the probability of short consecutive maximum chunk

sequences must be larger than the long consecutive maximum chunk
sequences. However, the probability of short consecutive maximum
chunk sequences can not be ignored. More specifically, the count
of consecutive max-length pattern sequences is drastically increasing
with the augment of total chunk number, which is consistent with
our experimental results.

III. ELASTIC CHUNKING

In this section, we summarize two principles in designing the
chunking algorithm to resist the local boundary shift problem based

the theoretical analysis in Section II. Then, we further propose an
novel chunking algorithm, elastic chunking algorithm, to dynamically
restrain the formalization of consecutive maximum chunk sequence.

A. Design Principles for Resisting Local Boundary Shift
Based on above problem, the purpose of elastic chunking is to

solve the local boundary shift problem. Hence, it must restrain
the formalization of consecutive maximum length chunk sequence.
Moreover, elastic chunking algorithm should also keep the better
or the same deduplication ratio and higher or the same throughput
compared with other chunking algorithms. It is noted that there is no
scheme to prevent the local boundary shift problem in existing Rabin-
based CDC algorithm since the parameter of maximum chunk size
results in the consecutive maximum chunk sequences. However, the
setting of maximum chunk size can not be removed to overcome
the local boundary shift problem since it reduces the impaction
for deduplication ratio under modification scenario and prevents the
large chunk size. Therefore, It is very important that how we can
achieve the goal of elastic chunking algorithm without removing
the parameter of maximum chunk size. Then, we summarize two
principles to solve the local boundary shift problem.

Principle 1: Once too many consecutive max-length chunks
occur during the chunking process, the chunking algorithm need
to dynamically increasing the probability of finding the boundary,
otherwise it will form a consecutive max-length chunk sequence.

The basic idea in principle 1 is to restrain the formalization of
consecutive max-length chunk sequence. When chunking process
generates a max-length chunk, it probably becomes a beginning of
consecutive max-length chunk sequence. Thus, we need to suitably
enlarge the probability of boundary decision when the former chunk
size is maximum chunk size. It is noted that appropriate enlarging
the probability of boundary decision does not violate the content
defined property in CDC because of the data locality. Content-defined
chunking algorithms can still tolerate the modifications located in
normal chunks. Consequently, we propose the principle 1 to avoid
the local boundary problem.

However, For each enlarging probability of finding a chunk bound-
ary, it corresponds to a new chunking rule. Different chunking rules
for distinct data section in chunking process, such as original data and
modified data, easily lead to different chunking results. Therefore,
a lot of unique chunks are produced in unmodified data section.
Thus, the principle 1 can only ensure to restrain the formalization
of consecutive maximum chunks sequence. But, it can not keep the
higher or the same deduplication ratio with traditional rabin-based
CDC. The design of elastic chunking algorithm should dynamically



adjust the parameters in chunking process. To handle this problem,
we further propose a principle 2 as follow.

Principle 2: Once the dilemma of the consecutive max-length
chunks is eliminated, the chunking algorithm needs to resume the
probability of finding the boundary to the initial state, or it will impact
the deduplication ratio.

The basic idea of principle 2 is to keep the generation of each
non-maximum length chunk under the same chunking rule. As
we mentioned above, principle 1 can not keep the higher or the
same deduplication ratio compared with traditional Rabin-based CDC
algorithms. What if we resume the chunking rule to initial state
when dealing with non-maximum chunk, it can keep the same data
distribution section being split under the same chunking rule. In other
words, principle 2 can keep the same or higher deduplication ratio
with traditional rabin-based CDC based on principle 1. deduplication
ratio. Therefore, dynamically resuming the probability of boundary
decision can handle above problem.

What’s more, it can also speed up the chunking throughput and
deduplication ratio by combining principle 1 with principle 2. There
are two reasons. Firstly, When elastic chunking algorithm restricts
the formalization of consecutive maximum length sequence, the
chunk number gradually increase under this condition. And the
chunking process does skip the scanning of minimum chunk size
bits for each chunk. Therefore, the chunking algorithm can skip
more bits. Secondly, as the suppression of consecutive maximum
length chunk sequence, the number of content-defined chunk number
also increase which can definitely improve the deduplication ratio. In
Subsection III-B, we design the elastic chunking algorithm to solve
the local boundary problems and decrease the impact of small scatter
modification in deduplication ratio by combining the Principle 1 and
2.

B. Elastic Chunking Algorithm
In this part, we introduce the details of elastic chunking algorithm.

It has seven parameters: Tmin means the minimum chunk size
threshold, Tmax denotes the maximum chunk size, and sub tMax

means the sub-maximum chunk size. D1 and D2 are the main divisor
value and second divisor value, respectively, while D2 is half of D1.
r1 is a value in the range of [0, D1). r2 is a value in the range of
[0, D2). sub tMax is one percent of tMax.

In practice, the elastic chunking treats each file as a bit stream and
scan it based on sliding window from the beginning to the end. During
the scanning process, elastic chunking algorithm records the whole
chunk boundaries. The rabin-based fingerprint value corresponding
for the sliding window content is divided by D1 and D2. Once the
remainder of D1 is equivalent to the predefined value r1, the current
location of sliding window is treated as a chunk boundary. If only the
remainder of D2 equals to the predefined value r2 before sub tMax,
the location is considered as a backup chunk boundary. When the
position is between sub tMax and tMax, the location is also set as
a backup chunk boundary, once the corresponding remainder divided
by D2 is equal to r2 or a value in a remainder set, rlist. The latest
backup chunk boundary is considered as the chunk boundary if no
chunk boundary is found until the maximum chunk length location.

Once neither a chunk boundary nor a backup chunk boundary
is found until to the maximum chunk length location, the current
location is forced as the chunk boundary since the maximum chunk
size is Tmax. If the current chunk is a maximum length chunk,
a new random value is added into rlist which is no greater than
D2. It is noted that rlist is dynamically adding or deleting some
remainder values to restrict the formalization consecutive maximum
chunk sequence or restore to initial chunking state. More specifically,
all the values in collection rlist must be in the range of [0, D2).
Elastic chunking algorithm adds a new random value into rlist for
each maximum length chunk, which is in the range of [0, D2). Once
a content-defined chunk boundary is detected, rlist will be emptied.

Algorithm 1: Elastic Chunking
Input: A file and the chunking algorithm’s parameters:

D1, D2, tMax, tMin, sub tMax, r1, r2
Output: the chunk boundary list breakpointlist

while scan the whole file from left to right do

if scan postion < tMin then
continue;

value = rabin hash(read(position, file));

if scan position < sub tMax then

if value%D1 = r1 then
addbreakpoints(position);
rlist.clear();
continue;

else

if value%D2 == r2 then
backup breakpoint = position;
rlist.clear();
continue;

if scan position == sub tMax then

if backup breakpoint 6≡ Null then
addbreakpoints(backup breakpoint);
rlist.clear();
continue;

if scan position < tMax then
rmd D1 = value%D1;
rmd D2 = value%D2;

if rmd D1 == r1 then
addbreakpoints(position);
rlist.clear();
continue;

if rmd D2 ∈ rlist||rmd D2 == r2 then
backup breakpoint = position;
rlist.clear();

else

if backup breakpoint 6≡ Null then
addbreakpoints(backup breakpoint);
rlist.clear();
continue;

else
max length count++;
add new r to rlist();
addbreakpoints(tMax);

return breakpointlist;



Elastic chunking algorithm increases the probability of boundary
decision by an adjustment policy to adding more compared remainder
values when facing the consecutive maximum length chunk sequence
or back to initial chunking state after a content-defined chunk
boundary. In other words, once the current chunk is non-maximum
length chunk, the set rlist is emptied. Based on principle 2, the
size of rlist is dynamically increasing to resist the formalization of
consecutive maximum chunk sequences.

The detailed procedure is shown as Algorithm 1. The function of
addbreakpoints in Algorithm 1 means recording a chunk boundary
position. The rabin hash calculates the rabin-based fingerprint hash
value in the content of sliding window [7]. The backup breakpoint
is a temporary variable to store the backup boundary position. Al-
though there may have several backup breakpoints during a boundary
decision process, only the latest backup breakpoint is stored in
backup breakpoint. Moreover, the function of add new r to rlist
adds the new random remainder value into rlist. During the chunking
process, rlist is dynamically adjusting. The more consecutive max-
imum length chunks occur during the whole chunking process, the
larger rlist is. Therefore, it can effectively resist the consecutive max-
length chunk pattern to avoid local boundary shift problem while also
keep the high deduplication ratio. It is noted that scanning process
can skip Tmin bits after each chunk boundary location, since the
parameter Tmin is the minimum chunk size.

IV. PERFORMANCE EVALUATION

In this section, we present the details of experimental design,
results, and analysis. Even though there are some research works
on chunking algorithms, most of them are dedicated to the through-
put of chunking algorithm. As for the deduplication ratio, TTTD
type chunking algorithm always achieve the best deduplication
ratio among these Rabin-based chunking algorithms without any
interaction with server. Note that, we consider that RC belongs to
TTTD category chunking algorithm since it uses the multi-stage to
vary the expected chunk size similar to TTTD chunking algorithm.
Leap-based TTTD [10] replaces the rabin-based hash by pseudo-
random transformation which does not use rabin fingerprint hash.
In this paper, we did not compare the leap-based TTTD [10] with
our algorithm since the optimization parameters of pseudo-random
transformation were not publicly available. We implement the BSW
CDC algorithm[6] , TTTD algorithm[8] and RC[9] as comparison
algorithms.

A. Experimental Setup
All the chunking experiments are conducted under the same

equipment machine with a Intel(R) Core(TM) i7-4702MQ@2.20GHz
8core CPU, 8GB RAM, and a 1TB 5400rpm hard disk. The OS
installed is Ubuntu 16.04 LTS 64-bit System. All chunking algorithms
are implemented in Java.

In our experiments, we use three datasets. First one is artificial
dataset which comes from vmdk file trace[11]. The second one
is Fslhome trace[12]. The third one is Linux Archive files[13].
To highlight the local boundary shift problem, we choose artificial
datasets as ideal datasets. Then, we also show the benefits under
different real datasets, including Linux Archive files and Fslhome
trace. Since the Linux Kernel archive files have variant versions, we
take it to simulate the realistic scenarios. Moreover, Fslhome trace
contains snapshots of student’s home directory from a shared network
file system. The snapshots were collected in the File System and
Storage Lab(FSL) at Stony Brook University.

B. Impacts of Deduplication Ratio by Local Boundary Shift
Problem

In this part, we take two type methods to preprocess the artificial
datasets before conducting experiments for highlighting the local
boundary shift problem. In the first method, each file of artificial

datasets is modified by adding one bit before the location of each
consecutive maximum length chunk sequence. Note that the location
of consecutive maximum length chunk sequence is recorded on
unmodified artificial datasets. Since different average chunk size will
have distinct probability of maximum length chunk, we conduct
the chunking process on modified artificial datasets. In the second
method, we randomly modify the file in unmodified artificial datasets
based on Poisson’s distribution from 0.2% to 16%.
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Fig. 1: Total Size of Artificial Dataset in the First Method

As shown in Figure 1, the final size of modified artificial datasets
by elastic chunking algorithm is compared with other algorithms.
The size after chunking in sliding CDC chunking algorithm increase
476MB as the average chunk size ranged from 16KB to 4KB.
TTTD chunking algorithm presents a similar tendency as sliding
CDC chunking algorithm. It is because that one bit modification in
method1 results in the following k maximum chunks as new chunks
where k is the chunk number in a consecutive maximum length
chunk sequence. Since BSW and TTTD have lots of consecutive
maximum chunk sequences, the final size of them are increasing
even though the average of chunking size decrease. RC has the
similar tendency compared with elastic chunking, since it decreases
the whole maximum length chunks by multi-stage divisor decision.
However, the chunking efficiency of RC is not better than proposed
elastic chunking which will be analyzed in following subsections.

3000

3500

4000

4500

5000

5500

6000

6500

7000

To
ta

l S
to

ra
ge

 Sp
ac

e 
af

te
r C

hu
nk

in
g(

M
B)

Random Modification Percentage 

BSW

TTTD

RC

Elastic

Fig. 2: Total Size of Artificial Dataset in the Second Method

As shown in Figure 2, we evaluate the changing final size after
chunking the modified artificial datasets based on method2. We can
easily figure out that randomly modification will also produce huge
new blocks leading to the final size keeps increasing. When increasing
size under 16% percentage of random modification is 2604MB more



than the situation under 0.20% percentage of random modification in
sliding-window CDC chunking algorithm. TTTD and RC performs
better than BSW CDC chunking algorithm. But the elastic chunking
can acquire lesser size compared with other algorithms. It is because
that elastic chunking can achieve less impact of deduplication ratio
under the randomly modification scenario. Since elastic chunking
can tolerant the boundary shift problem, it can decrease the impact
of modification located at non-maximum chunk’s data sections.
Moreover, elastic chunking can further solve the local boundary shift
problem based on the dynamical adjustment scheme. Consequently,
elastic chunking have a smaller final size compared with others in
distinct random modification proportion.

C. Benefits on Real Datasets by Solving Local Boundary Shift
Problem

To further observe the benefits on the real datasets, we conduct
the experiment on two real datasets. The first one is the Fslhome
[12]. The second one is Linux kernel [13]. Each dataset includes
several former modified versions. For example, the Fslhome trace
collected the students’ home directories for every day which consist
of the office documents, source code, virtual images and other
miscellaneous files. To test the elastic chunking algorithm on real
datasets, we respectively test the three chunking algorithms on 16KB,
8KB, and 4KB average chunk sizes by measuring the sizes after
removing duplicate chunks.
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Fig. 3: Total Size of Fslhome Datasets after Chunking

As shown in Figures 3 and 4, Sliding CDC ,TTTD and RC have
the decline tendency as the average chunk size changed from 16KB
to 4KB. It is because the less average chunk size it has, the more
duplicate data the chunking algorithm can remove. However, Our
method can find more duplicate data compared with others. For
example, when the average chunk size is 8KB, RC is better by
removing 43MB and 109MB more data than TTTD in Fslhome and
linux workloads, respectively. Moreover, elastic chunking can further
save 148MB and 174MB compared with RC when average chunk
size is 8KB. As the average chunk size is decreasing, the more
duplicate data can be discovered compared with others. It is because
that elastic chunking algorithm also restricts the consecutive max-
length chunk sequences to solve the local boundary shift problem.
In Fslhome and Linux Archive workloads, there exist a lot of
modification version files which easily lead to local boundary shift
problem while other chunking algorithms ignore the penalties caused
by maximum length chunks. In elastic chunking algorithm, the local
boundary shift problem is solved by dynamically adjustment scheme
to limit the formalization of consecutive maximum length sequence.
From Figures 3 and 4, one can clearly see that the elastic chunking
algorithm performs well on real datasets.
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Fig. 4: Total Size of Linux Dataset after Chunking

D. Throughput Comparison
To further evaluate the throughput of elastic chunking algorithm

compared with others, we measure the throughput on Fslhome and
Linux Archive workloads. The results of chunking throughputs of
BSW CDC chunking algorithm , TTTD, RC and elastic chunking
algorithm on two real datasets from 4KB to 16KB are shown in Table
IV. Based on the results, a few observations are as follows: First, the
throughput in rabin-based chunking algorithms is largely independent
with the average chunk size. From Table IV, each chunking algo-
rithm’s throughput is almost the same. However, different chunking
algorithm has the variant throughputs under the same condition. For
example, When the average chunk size is 16KB, the throughput in
elastic chunking is 26.4% higher than RC. Compared with TTTD and
BSW, elastic chunking algorithm outperforms by 16.6% and 17.7%,
respectively. Even though the TTTD and RC can discover more
duplicate data compared with BSW, Both TTTD and RC take too
much time in boundary decision process because of multi-stage loop
process. Therefore, BSW CDC owns a higher throughput compared
with TTTD and RC. However, elastic chunking can acquire a faster
throughput than others since it do not need always taking multi-
stage method to decrease the maximum chunks. Elastic chunking
algorithm is to dynamically restrict the consecutive maximum chunk
sequence, not all the maximum chunks. Therefore, Our chunking
algorithm can have the highest throughput compared with other
chunking algorithms.

TABLE IV: Throughput Comparison in Real Datasets(MB/s)

Workloads BSW TTTD RC Elastic ACS(KB)
Fslhome 305.13 302.38 281.42 355.76 16
Fslhome 303.37 300.19 277.58 325.51 8
Fslhome 300.79 298.83 273 315.29 4

Linux 303.59 287.36 269.44 350.2 16
Linux 295.93 281.17 274.48 327.38 8
Linux 298.07 272.38 256.32 312.84 4

V. RELATED WORK

Chunking algorithm is an important component in deduplication
system [14–17]. The basic idea is to split the large file into small
chunks for removing more duplicate data. Therefore, how to decide
the boundary of each chunk is the key process in chunking algo-
rithm. In other words, the efficiency of chunking algorithm directly
determines the deduplication ratio and throughput in a deduplication
system. The simplest and fastest approach for high throughput is
to break the large file into fixed-size chunks [18, 19]. However,
boundary shift problem will occur when a modification edit near
the beginning of a file in Fixed-size chunking algorithm[20].



To overcome this problem, two main boundary judgment methods
are proposed in content-defined chunking, rabin-based fingerprint
value [7] and the maximum or minimum extreme value[21]. As
for the Rabin-based fingerprint [6], basic sliding window content
defined chunking algorithm(BSW CDC) is proposed by producing
variable size chunks in deduplication to solve the boundary shift
problem. Since the chunk boundary is related to content, BSW CDC
can effectively decrease the impact of modification compared with
Fixed-size chunking algorithm. It runs a sliding-window hash along
the byte stream. When the hash value in sliding window equals to
a predetermined value, a chunk boundary was declared. Imposing a
minimum and maximum parameters in BSW algorithm is to avoid too
small or too large chunks. The BSW approach is appealing because
it helps make the deduplication ratio more stable and improves
deduplication performance with skipping of the minimum chunk
size when searching for breakpoints. Our algorithm followed this
limitation.

However, even though the BSW content-defined chunking algo-
rithm can effectively inhibit the boundary shift problem compared
with fixed-size chunking algorithm, it performs poorly on real data
[8]. There is still some improvement space on BSW algorithm,
such as the modification overhead to deduplication ratio. A small
modification may enlarge several new chunks to be upload. What’s
more, [22] shows that small semantic changes on documents cause
lots of small modification in the binary representation of files,
which will greatly impact the deduplication ratio. After a quan-
titative analyzing for former content-defined chunking algorithms,
TTTD [8] suggests that reducing chunk size variability can decrease
the modification overhead. To solve above problem, it argue that
chunking algorithm need avoid too small or too large chunk size to
decrease the modification overhead by theoretical analysis. Based on
TTTD algorithm, TTTD-s algorithm [23] is proposed to make some
improvement on the trade-off and solving the redundancy computing
boundary problems caused by second divisor in TTTD. However,
it potentially decreases the average chunk size by diminishing the
divisor value during chunking process. What’s more, it is very hard
to grasp the average chunk size.

In addition, RC [9] adopted secondary, third, fourth and fifth
conditions to reduce the proportion of forced boundaries. However,
it was the enforce multi-stage version of TTTD in essence. So the
real problem of maximum length chunk is not whether the chunk is
content defined,but the risk of consecutive maximum length chunks.
What’s more, RC[9] takes a fixed divisor value list as the second
divisor in TTTD to minimize the probability of Maximum length
chunks for each boundary decision like a multi-stage TTTD. More
specifically, each forward processing in RC need (k-1) additional
loop match, where k means the regression level parameter in RC.
When K=2, RC chunking will have the same similarities with TTTD
chunking algorithm. the parameter k in RC chunking algorithm
are predefined before chunking process, not dynamic, which will
cost too much overhead. What’s more, it can only improve a little
deduplication ratio compared with TTTD as discussed in Section IV.

Bimodal CDC [24] also propose a dynamically method to vary
the expected chunk size to perform content-defined chunking with
several interactions with server-side. This algorithm first chunks the
data stream into large chunks and then splits part of them into
small chunks. Similarly, Lu also mixed chunks of different average
size together, but determined whether to chunk the data stream into
large chunks or small chunks according to the reference count[25].
However, they have to check the fingerprint index to determine
whether to split large chunks or merge small chunks with the
interactions with server-side. It is noted that we do not focus on the
chunking algorithm with interaction with server. To further improve
the chunking throughput, Leap-based TTTD present a leap-based
CDC algorithm with a leap procedure to improve the deduplication
performance[10]. But it was not based on the fingerprint value and
the optimal parameters is not published yet. When putting the Leap

scheme into TTTD, the deduplication ratio is no more than using
TTTD.

There are also some other chunking algorithm based on the
extreme value such as MAXP[21] [26] and AE[27]. But they are
based on the extreme value in boundary decision, not based on Rabin.
In our focus, TTTD type can achieve the highest deduplication ratio
in our focus algorithm field. However, most of them are simply think
the maximum length chunk is one of the reasons that impact the
deduplication ratio. However, we discover that the real problem is
the local boundary shift problem caused by maximum length chunks,
not the whole maximum length chunks. Once one bit is changed in
the first maximum length chunk in a consecutive max-length chunk
pattern, these small sequences will degrade to a local fixed-sized
chunking situation. Unfortunately, existing content based chunking
algorithms namely BSW, TTTD and RC, ignore the degradation
caused by consecutive max-length chunk pattern.

To overcome the local boundary shift problem, elastic chunking
algorithm is proposed to dynamically restrain the formalization of
consecutive maximum length sequence. By reducing the consecutive
maximum length sequence, it decreases the impact of small scatter
random modification in deduplication scenario. the existing Rabin-
based chunking algorithm such as BSW, TTTD, and RC chunking
algorithms may easily be affected by small scatter modifications,
especially in those frequently revised storage scenarios.

VI. CONCLUSIONS AND FUTURE WORK

Deduplication is one of the most popular methods since it can
efficiently improve the utilization of server storage and save the
network bandwidth by removing the redundancy. As an important
component of deduplication, chunking algorithm directly determines
the deduplication ratio and throughput of deduplication system. How-
ever, the consecutive maximum length chunk sequence easily results
in local boundary shift problem. It can sacrifice the deduplication ratio
and throughput when a small modification before the consecutive
maximum length chunk sequence. Moreover, existing rabin-based
chunking algorithms, which without the interaction with server during
chunking process, do not consider this problem in the design of
chunking algorithm.

In this paper, we present the local boundary shift problem. Then,
we further analyze the problem from both theoretical and experi-
mental aspects. To overcome the local boundary shift problem, we
propose a novel chunking algorithm, elastic chunking, by dynamically
limiting the formalization of consecutive maximum length chunk
sequences. Our experimental results clearly show that elastic chunk-
ing algorithm can effectively solve the local boundary problem and
achieve an higher deduplication ratio and throughput compared with
other chunking algorithms.

In the future work, we plan to broadly test elastic chunking
algorithm in more diverse workloads and integrate it into secure
deduplication scenario. In addition, we also plan to speed up the
chunking process and reduce the energy consumption under the fog
computing scenario.
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