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SUMMARY

Singular Value Decomposition (SVD) shows strong vitality in the area of information analysis, and has
significant application value in most of the scientific big data fields. However, with the rapid development
of Internet, the information online reveals fast growing trend. For a large-scale matrix, applying SVD
computation directly is both time consuming and memory demanding. There are many works available
to speed up the computation of SVD based on the Message Passing Interface (MPI) model. However,
to deal with large-scale data processing, a MapReduce model has many advantages over a MPI model,
such as fault tolerance, load balancing, and simplicity. For a MapReduce environment, existing approaches
only focus on low rank SVD approximation and tall-and-skinny matrix SVD computation, and there
are no implementations of full rank SVD computation. In this paper, we propose a MapReduce based
implementation for solving divide-and-conquer SVD algorithm. To achieve high performance, we design
a two-stage task scheduling strategy based on the mathematical characteristics of divide-and-conquer
SVD algorithm. To further strengthen the performance, we propose a row-index based divide algorithm,
a pipelined task scheduling method, and revised block matrix multiplication in MapReduce framework.
Experimental result shows the efficiency of our algorithm. Our implementation can accommodate full rank
SVD computation of large-scale matrix very efficiently. Copyright c© 0000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Singular Value Decomposition (SVD) [1] is widely used in scientific big data and engineering
fields, including signal and image processing, system distinguishing, social network analysis
and recommender systems. Singular value decomposition plays an important role in complex
information processing. However, the amount of information generated from the World Wide Web
is big and has been growing very rapidly. The cost of a large-scale SVD computation is stupendous,
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2 S.ZHAO ETAL

so that it is infeasible for an individual machine to meet the storage and SVD computation needs of
large-scale matrix.

MapReduce [2], first introduced by Google, has been a very attractive way of processing
massive datasets. Apache Hadoop project is the most popular implementation of MapReduce
programming model. Hadoop relies on a distributed file system to share large-scale dataset among
clusters. MapReduce procedure includes a shuffle phase where intermediate result is written on
disk. Thus, we do not expect algorithms running in MapReduce framework to be faster than
algorithms deployed in a state-of-the-art in-memory Message Passing Interface(MPI) cluster.
However, MapReduce model has many advantages over MPI model, which makes it attractive to
process large-scale dataset. MapReduce model is designed to be fault tolerant while MPI model
is not. Moreover, MapReduce model offers mechanisms to automatically deal with load balancing
issues as well as input and output operations in a distributed environment, which greatly simplifies
the programming. In today’s IT industry, many companies have employed Hadoop distributed
systems to deal with their daily business data.

There are already implementations of SVD computation in MapReduce available. However,
these implementations only focus on two aspects. The first one is low rank SVD approximation of
matrices [13, 19, 21]. These research works are designed for those applications such as large-scale
recommender systems in which only small fraction of singular values are needed. Nevertheless, for
applications, such as matrix pseudo-inverse calculations that are widely used in large-scale medical
and astronomy image processing field nowadays [8] and full rank principal component analysis
in face recognition [9], performing a full rank SVD computation is required. Obviously, current
implementations of SVD computation in MapReduce framework can hardly deal with them. The
second aspect is tall-and-skinny matrix SVD computation. However, these methods only make sense
for special matrices [16, 18].

Among all the approaches that are intended for full rank SVD computation, the most commonly
used SVD algorithm is based on QR iteration [3]. However, this algorithm has one major drawback
when deployed in distributed computing systems. QR iteration based SVD algorithm requires huge
amount of iterations to produce the final result. While, on the other hand, for one iteration of a
MapReduce job, Hadoop has to read the input data from a distributed file system and write the
result back. This repeated read and write I/O operations become the bottleneck of the algorithm.
From this respective, QR iteration based SVD algorithm is not suitable in MapReduce framework.
Another approach for full rank SVD computation is Jacobi method. Nonetheless, this method also
requires large number of iterations to produce the final result [6].

In comparison with the QR iteration based SVD algorithm, divide-and-conquer approach is
another efficient way for solving full rank SVD problem. The key point of this algorithm is to split
the original problem into many sub-problems using a division strategy and merge the result of the
sub-problems to produce the final result. Therefore, this algorithm has satisfactory parallelization
and scalability when applied into distributed systems. Also, the recursive fashion of this algorithm
demonstrates that it is optimal in terms of number of iterations among different types of full rank
SVD algorithms. We believe that this algorithm is well suited to MapReduce framework.

In this paper, we propose a parallelized divide-and-conquer SVD algorithm using MapReduce
programming model. We have three main contributions in our work. First, each merge task of SVD
algorithm is organized as a node in a binary tree. We propose a two-stage task scheduling strategy to
dynamically parallelize the computation of merging tasks in a level of tree according to their matrix
size. Second, we design an efficient way to fully split the input matrix into leaf problems according
to the division strategy of the algorithm using MapReduce. Third, matrix multiplication is the
most expensive step of the whole divide-and-conquer SVD algorithm. We improve the basic block
matrix multiplication for divide-and-conquer SVD algorithm by avoiding zero elements transfer and
computation in the cluster.

The rest of this paper is organized as follows. Section 2 provides an overview of related work.
The detailed implementation of singular value decomposition is given in Section 3. Our overall
architecture of SVD algorithm in MapReduce framework is presented in Section 4, and Section 5
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DIVIDE-AND-CONQUER SVD BASED ON MAPREDUCE 3

describes the whole process of SVD parallelization in MapReduce framework. Section 6 presents
the experiment and analysis. Finally, we draw a conclusion in Section 7.

2. RELATED WORK

Full rank SVD algorithms can be generally divided into three categories. The first one is QR iteration
approach which is most widely used. This approach has high accuracy and numerical stability [3].
To obtain higher performance, Cuppen first proposed a divide-and-conquer approach to solve eigen
problems [4], and it was improved by many other researchers. Gu and Eisenstat [5] proposed a
divide-and-conquer SVD algorithm, which is regarded as the fastest algorithm among all SVD
methods. This algorithm can be used to solve least squares problems much faster than QR iteration
algorithm [7]. The third one is Jacobi method. In terms of numeric calculation speed, Jacobi method
is the slowest, but it has higher precision than any other methods [6].

Lots of research work has been devoted to improve SVD calculation efficiency. GPU, which
has strong computational efficiency, was used to improve computation speed of singular value
decomposition [10, 11, 12]. However, their work focus on how to speed up SVD computation in
standalone context and cannot deal with singular value decomposition of large-scale matrices.

Mahout [13], an open source toolkit, includes SVD algorithm based on MapReduce that employs
Lanczos method to do SVD computation. In each iteration, one singular value and corresponding
singular vectors are calculated. However, for full rank SVD applications, a large number of iterations
are required. As mentioned above, this drawback produces severely adverse effects upon the
performance of algorithm and makes the computation intractable when the dimension of matrix
is large. In addition, Mahout SVD is only designed for sparse matrix.

Liu et al [14] proposed a novel MapReduce based distributed LSI. However, this work did not
include the approach to obtain the original documents-term matrix in distributed environment. Yeh
et al [15] proposed an iterative divide-and-conquer based estimator for solving large-scale LSE
problems. Iteratively, LSE problem to be solved is transformed to equivalent but smaller LSE
problems. Actually, this method did not aim to solve singular value decomposition problem.

In other related works, Constantine et al [16, 17] presented a method to compute QR factorization
in MapReduce. They design an efficient way to get the result of R matrix whose dimension is
small and then directly compute the SVD of small matrix. Their work is improved by Benson et al
[18] to obtain a stable tall-and-skinny QR factorization method based on MapReduce architecture.
However, their methods are only designed for tall and skinny matrix. To solve the SVD of tall
and fat matrices, Bayramli [19] proposed a solution based on MapReduce framework. It adopts a
random projection method to transform the original large-scale matrix to a small matrix and then
compute the singular value decomposition of small matrix. Obviously, their work mainly deals with
rank k approximation of SVD. When k is large, their implementation won’t work. Ding et al [20]
introduced a solution which used PARPACK toolkit in MapReduce framework to obtain the singular
values and singular vectors of the large-scale matrix. Nevertheless, it still aims to deal with low rank
SVD computation and numerous of iterations are required to obtain a full rank SVD.

To the best of our knowledge, there is no effective implementation about full rank SVD
computation in MapReduce framework.

3. DIVIDE-AND-CONQUER SVD ALGORITHM

In this section, we give an overview of the process of the divide-and-conquer SVD algorithm. More
detailed information about this algorithm can be found in [5].

Generally, given a matrix A ∈ Rm×n(m > n), we can always find an equation

A = U

(
Σr 0
0 0

)
V T (1)
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where U = [u1, u2, ..., um] ∈ Rm×m and V = [v1, v2, ..., vn] ∈ Rn×n are both orthogonal matrices,(
Σr 0
0 0

)
is a m× n matrix and Σr with nonzero diagonal entries satisfying w1 ≥ w2 ≥ ...wr > 0.

Eq. (1) is what we call Singular Value Decomposition. Normally, the input matrix of a SVD
algorithm is bi-diagonal matrix. If not, we should first convert it into bi-diagonal matrix by a
Householder transformation. Here and in this paper, we assume to have a (N + 1)×N lower bi-
diagonal matrixB as the input of our SVD algorithm. Divide-and-conquer algorithm first recursively
divides matrix B into the following form:

B =

(
B1 αkek 0
0 βke1 B2

)
(2)

where B1 and B2 are also K × (K − 1) and (N −K + 1)× (N −K) bi-diagonal matrices
respectively, and K = bK/2c. The algorithm will solve the Singlular Value Decomposition of B1

andB2 recursively. Assume that the SVD ofBi is
(
Qi qi

)(Di

0

)
WT

i . We obtain then we permute

the right hand of Eq. (2) to the following form:

B = QMWT

=

(
c0q1 Q1 0 s0q1
s0q2 0 Q2 c0q2

) r0 0 0
αkl1 D1 0
βkf2 0 D2

0 0 0


0 W1 0

1 0 0
0 0 W2

 (3)

where r0 =
√

(αkλ1)2 + (βkφ2)2 and variables l1 , fT2 are last row and first row of Q1 and Q2

respectively, λ1 and φ2 are last component and first component of q1 and q2 respectively. The next
step is to solve the singular values of middle matrix

z1
z2 d2
...

. . .
zn dn


where 0 ≡ d1 ≤ d2 ≤ · · · ≤ dn. The singular values of this matrix are the roots of the secular

equation f(w) = 1 +
n∑

i=1

z2
k

d2
k−w2 = 0 and also satisfy the property 0 = d1 < w1 < d2 < · · · < dn <

wn < dn + ‖z‖2.
After solving all the singular values, we calculate the singular vectors of matrix M using the

following equation:

ui =

(
z1

d2
1−w2

i
, · · · , zn

d2
n−w2

i

)T
√∑n

k=1
z2
k

(d2
k−w2

i )
2

, vi =

(
−1, d2z2

d2
2−w2

i
, · · · , dnzn

d2
n−w2

i

)T
√

1 +
∑n

k=2
(dkzk)2

(d2
k−w2

i )
2

(4)

However, in all cases, for a specific singular value wi, we can only calculate an approximation ŵi

using whatever approaches to solve the secular equation. In reality, even if the variable ŵi is very
close to wi, algebraic expression zi

d2
i−ŵi

2 and dizi
d2
i−ŵi

2 are also very different from the true numeric
values zi

d2
i−w2

i
. As a result, the accuracy and orthogonality of all singular vectors are not ensured.

To solve this problem, Gu and Eisenstat [5] presented an efficient way that after solving all the
singular values ŵi, all the elements ẑi in the first column of matrix M are recalculated using the
following equation:

|ẑi| =

√√√√(ŵn
2 − d2i )

i−1∏
k=1

ŵ2
k − d2i
d2k − d2i

n−1∏
k=i

ŵ2
k − d2i

d2k+1 − d2i
(5)
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This leads to a high accuracy of left and right singular values of matrix M . After the SVD of matrix
M is computed as the product UΣV T , we obtain the SVD of matrix B as (QUq)Σ(WV )T =
XΣY T through two matrix multiplications.

We summarize the divide-and-conquer SVD algorithm as Algorithm 1.

Algorithm 1 Divide-and-conquer SVD algorithm
1: Input: bi-diagonal matrix B
2: Output: the SVD result of bi-diagonal matrix B.
3: Define the minimal size of the sub-problem, divide the bi-diagonal matrix B recursively to obtain a binary tree.
4: For all the leaf sub-problems in the binary tree, use QR iteration based SVD algorithm to solve them.
5: for each non-leaf problems in the tree do
6: Permute the SVD results of its two sub-problems to construct the middle matrix M
7: Solve the secular equation to get all singular values and then revise the z vector.
8: Calculate the singular vectors of matrix M
9: Calculate the singular vectors of original matrix B by matrix multiplications.

10: end for

4. ARCHITECTURE

4.1. Two-stage merge task scheduling

After we split the original bi-diagonal matrix recursively using the specific division strategy, the
SVD solving process of the original problem can be organized as a binary tree, as shown in Figure 1.
In the binary tree, leaf nodes denote minimal sub-problems, and non-leaf nodes denote merge tasks
to merge SVD result of two smaller sub-problems. The most direct way of solving this problem
is based on a post-order traversal fashion. That’s to say, we divide the original problem recursively
until we reach one leaf problem, solve the leaf problem using QR iteration based SVD approach, and
then merge the SVD results of two sibling nodes to form the result of their parent node according to
the recursion branches generated by the program. However, in a distributed running environment,
we need to record the global information of the whole binary tree, which is significantly memory
demanding. To overcome this problem, given a fixed size of matrix, we first fully split the original
matrix to a set of leaf sub-problems using a specific division algorithm. Second, we solve all the
leaf nodes, and then execute the merge tasks level by level.

In Hadoop runtime environment, a straightforward way of parallelization is to let one MapReduce
job execute one level of merge tasks, and each merge task of one level is assigned to one map
or reduce task in this job as shown in Figure 1. However, there is one main drawback about this

Figure 1. Level by level iteration Figure 2. Multi-job task scheduling

implementation. When the merging stage of SVD moves towards upper level of the binary tree, the
number of map or reduce tasks will doubly reduce level by level. As a result, at the root level, there
will be only one task to execute the merging task, while the amount of computation for each task
will doubly increase as the size of matrix for each task increase level by level. This trend will lead
to a considerable load imbalance problem.
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To address this problem, another way of parallelization is to let one or more MapReduce jobs
execute one merge task of the whole tree as illustrated in Figure 2. In this way, Hadoop framework
will dynamically distribute the computation work to all nodes in distributed systems. However, there
are still limitations in this approach. Consider one situation, where we define a very small size of
matrix as the minimal sub-problem for a very big size of original problem, which will generate many
small size leaf-problems. Therefore, there will be too many MapReduce jobs to be launched for the
bottom level of the tree, while the size of input data for these jobs is very small. For a matrix whose
size is small, using the memory of a single node to deal with the computation is quite enough. If
we parallelize small size matrix in a distributed manner, additional cost of I/O and network transfer
during the algorithm execution will be a significant bottleneck.

Weighing the merits and demerits of each approach, in this paper, we propose a two-stage task
scheduling algorithm. Namely, at the bottom level of the tree, if the size of matrix is less than
a specific threshold s1, we use the first way of parallelization. We call it the first stage. As the
program moves to a specific level when the size of matrix is equal or larger than s1, we begin
to use the second way of parallelization. We call it the second stage. Thus, we take advantage of
both approaches to significantly improve the performance of the algorithm running in distributed
environment. The architecture is shown in Figure 4.

Figure 3. Two stage task scheduling strategy Figure 4. Pipelined task scheduling

4.2. Pipelined task scheduling

During the process of the second stage, each merge task of one level in the tree is composed of
several steps and each step will be assigned to one MapReduce job. Different steps of one same
merge task should be executed one by one serially according to the algorithm logic. Meanwhile,
different merge tasks belonging to the same or different levels can be executed independently. We
use one thread to control the scheduling of jobs for each step in each merge task. To speed up the
execution of the algorithm, we propose a pipelined task scheduling strategy.

Figure 5 shows the procedure of how pipelined task scheduling works. Assuming at time t1, there
are four threads scheduling task 1000,1001,1010,1011 respectively. And then at time t2, both merge
tasks 1000 and 1001 are finished, the thread for task 100 will start immediately without the necessity
to wait for task 1010 and 1011 to complete. On the contrary, if we adopt level by level scheduling
strategy in the same way as the first stage when all the tasks in a level should be finished before
its upper level of merge tasks start scheduling, there will be two extreme situations occuring in the
second stage. There must be a time when there is only one MapReduce job belonging to the last
merge task in a level running in the cluster which may only occupy several computation nodes in
the cluster while other nodes are idle. On the other hand, there also must be a time when all the
merge tasks belonging to one level start being scheduled at the same time so that they have to madly
compete for the relatively limited computation resource in the cluster. Therefore, by adopting the
pipelined task scheduling strategy, at any time, we can make full use of the computation resources
in distributed environment.
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DIVIDE-AND-CONQUER SVD BASED ON MAPREDUCE 7

4.3. Divide algorithm

In a distributed runtime environment, for a large-scale lower bi-diagonal matrix, even if we only
store its non-zero elements, it is impossible for a single node to store all its elements in memory.
Therefore, traditional recursive division approach is no longer applicable. As a result, the first
problem that the divide-and-conquer SVD algorithm should deal with is how to efficiently extract
all leaf problems from the original matrix which exists in distributed file system. In this paper, we
design a row-index based approach for quick matrix division. Figure 5 shows the whole procedure

Figure 5. Divide algorithm in MapReduce

of our approach. Given the dimensionality of a matrix and the specific division method, we can
use an in-memory program to generate a binary tree with each node recording the positions of all
sub-problems in the original matrix. Consequently, we can get the whole mappings from each row
of the matrix to a specific sub-problem. We call this kind of information row-index. On the other
hand, the original bi-diagonal matrix is stored in a distributed file system row by row and each row
of the matrix is stored as a key-value pair. Thus, we launch a MapReduce job, for each row read
from HDFS in map task, look up its corresponding row-index information in memory to find which
sub-problem it belongs to. For an example, when map task read the second row of matrix in Figure
5, it will emit the key-value pair < 10, (100, 2, β1, α2) > to reduce task. This means that leaf nodes
which share the same parent node will be received as one key-value list pair by reduce task, and we
can resemble all the data belonging to one leaf node very easily in reduce task. Then we can solve
all the leaf nodes using QR iteration SVD algorithm, and put the SVD result of sibling nodes in one
key-value pair. In this way, we get preparation for the subsequent iterations.

5. PARALLELIZATION IMPLEMENTATION IN MAPREDUCE

5.1. Level by level merge implementation

If the size of leaf problems is small, we will merge the sub-problems level by level. All the merge
tasks in a level are controlled by one MapReduce job. The output of division algorithm will be the
input of the first stage. As shown in Figure 6, all the merge tasks in a level are executed in map
tasks. For example, when the sub-problems 1000 and 1001 are merged in a map task and produce
the SVD result of 100, the map task will emit a key-value pair < 10, [100, SV D(100)] > to a reduce
task. Thus, in one reduce task, sibling sub-problems 100 and 101 which share the same parent node
10 will be received. A reduce task merges the SVD results of the sibling nodes as one key-value pair
and outputs it to HDFS. This output will be the input of next MapReduce job which performs the
same operation until the size of sub-problems in current level reaches a specific threshold.
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Figure 6. Level by level merge implementation Figure 7. Middle matrix permutation

5.2. Multi-job based pipelined task scheduling

When the matrix grows to a big size, it is incapable for a single node to accommodate a whole matrix
in memory. Therefore, it is time to seek ways to parallelize the merge procedure using MapReduce
to make it possible for large-scale matrix processing in a distributed environment.

When the algorithm enters the second stage, the layout of matrix in HDFS is a critical point. A
reasonable layout of matrix is conducive to the subsequent steps of a merge task. We can see from
Algorithm 1 that the whole merge procedure of SVD algorithm is mainly composed of four steps.
Due to the mathematical complexity of SVD algorithm, we use separate files to store different parts
of matrix involved in the merge procedure of SVD algorithm. For example, we use four different
files to store four different parts of the matrixQ, namelyQ1,Q2, (c0q1, s0q2)T , and (−s0q1, c0q2)T .
Also, we use five files to store five different parts of matrix M , namely r0, αkl1, βkf2, D1, and D2,
and two files to store matrixW . Different parts of different matrix will be the input of different steps
of merge procedure we will describe later on. In addition, we apply a row major or column major
storage for all matrices in this paper depending on different situations.

5.2.1. Middle matrix M permutation Observing three matrices generated in middle matrix
permutation step, we discover that six matrices Q1, Q2, D1, D2, W1, and W2 can be obtained
from the result of two sub-problems through simple transformation, and this operation fits well
in MapReduce, while we need additional consideration for the computation of (c0q1, s0q2)T ,
(−s0q1, c0q2)T , r0, αkl1, and βkf2. First, we focus on how to obtain (c0q1, s0q2)T , (−s0q1, c0q2)T ,
and r0. According to divide-and-conquer algorithm, computation of these three parts only relies on
variables q1, q2, αk, and βk. Hence, we only need to read q1, q2, αk, and βk from HDFS to calculate
them. This step has small amount of computations. Thus, putting this step in the driver module of
MapReduce program is quite suitable. Six files that are used to store matrices Q1, Q2, W1, W2, D1,
and D2 will be the input of one MapReduce job. This MapReduce job will convert the format of the
matrix and output the six matrices Q1, Q2, W1, W2, D1, and D2 to separate files organized line by
line. At the same time, when map tasks read the last row of matrix Q1 or the first row of matrix Q2,
they will output αkl1 and βkf2 directly to HDFS. This process is shown in Figure 7.

5.2.2. Secular equation solving and Z vector revising This step is to solve the singular values of
middle matrix M . The singular values of matrix M satisfy secular equation. There are various
approaches available to solve this equation including Newton method, Middle Way method, and
Bisection method. No matter which method is adopted, if a root is not found in one iteration, another
iteration is required to find the next approximate point. Among all these approaches, Newton method
and Middle Way method take less iterations than Bisection method to get the final result [21, 22, 24].
However, for these methods, doing one numerical iteration is much more expensive than Bisection
method. What’s more, Newton method and Middle Way method actually do not ensure numerical
convergence [12]. Compared to Newton methods, Bisection method has the slowest arithmetic speed
[23]. However, this method is quite simple for every numerical iteration. That’s to say, only one
floating point operation is needed to find the middle point of upper and lower bounds. Besides,
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Figure 8. Secular equation solving and z vector revising Figure 9. UV vector computation

Bisection method guarantees numerical convergence perfectly and is easier for parallelization.
Therefore, we use Bisection method to solve secular equation in distributed environment.

Note that we require all elements of z vector and d vector before we solve one root of secular
equation. In this paper, we assume every single node of distributed environment is capable to store
two vectors of matrixM in memory. Thus, we can directly import z vector and d vector into memory
to make the computation of different singular values work in parallel in distributed environment. We
see that the solving process of different singular values can be done independently. Thus, interval
segments of singular values are the input of a MapReduce job. The z vector and d vector are added
to distributed cache before a MapReduce job is launched. We solve the singular values in map tasks
and emit segments of singular values directly into HDFS.

At the same time, we observe Eq. (5) and find that the computation of ẑi relies on d vector and all
singular values {wi}ni=1. Besides, the computation of ẑi is the multiplication of multiple factors with
the same form and extract a square root at last. Therefore, in map task, after solving a segmentation

of singular values w1 ∼ wr, we can calculate a continued product
r∏

k=1

ŵk
2−d2

i

d2
k−d2

i
as partial result of ẑi.

And then we send all partial results belonging to ẑi to one reduce task during shuffle phase. Reduce
tasks will multiply all these partial results and perform a square root extraction. At last, reduce tasks
emit the final result of ẑi into HDFS. The process is shown in Figure 8.

5.2.3. UV vector computation The next step is to compute all the singular vectors of matrix M
using Eq. (4). As shown in Figure 9, the computations of vector ui and vi rely on d vector, revised
ẑi vector and their corresponding singular value wi. d vector and revised ẑi vector are shared by the
program globally, and the computations of ui and vi can be performed independently. As a result,
we import the d vector and revised ẑi vector into Hadoop distributed cache. All segments of singular
values output by previous step will be the input of this step. In map task, as one singular value wi is
read from input data, we calculate its corresponding ui and vi vectors using Eq. (4). the computation
result of map task is output into HDFS directly with a format of column major storage.

5.2.4. Matrix multiplication The final step of merge procedure is matrix multiplication to obtain
the singular matrices of matrix B. There are many researches available concerning how to perform
large-scale matrix multiplication in MapReduce framework. The most frequently used method is
to perform dot production between one row of first matrix and one column of second matrix
[25, 27, 28]. This method is simple and intuitive when employed in MapReduce framework,
while, on the other hand, this method can cause severe network traffic during the shuffle phase
[27]. To address this problem, block matrix multiplication is presented [26]. In distributed running
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environment, to achieve high parallelization, we have to distribute different parts of calculations of
result matrix to different nodes, so all the elements of operational matrices need replicated multiple
times, which causes additional cost of I/O and network transfer. For general dense matrices, block
matrix multiplication requires the least times of matrix element replication of all the available
approaches. In this paper, we will adopt a block matrix multiplication approach.

The principal of block matrix multiplication is illustrated as Figure 10. Assume that there is a
matrix multiplication as the Eq. (6):

A×B = C (6)

where matrix A is divided into NIB row blocks and NJB column blocks, matrix B is divided into
NJB row blocks and NKB column blocks. Figure 10 shows the computation process of first row
and first column block of result matrix C, where each block in first row block of matrix A has to be
multiplied by another block in first column block of matrix B. However, we discover that there are

Figure 10. Basic block matrix multiplication Figure 11. Revised block matrix multiplication

large amount of continuous position zero elements in matrix Q and matrix W as shown in Eq. (3),
which occupy approximately half of the total elements in these matrices. Based on the basic block
matrix multiplication, there will be a lot of ineffective block replications and block computations.

To avoid this problem, we use a matrix block mapping mechanism. We take the case of matrix Q
multiplying matrix U as an example. Recall that we use three separate files to store three parts
of matrix Q, namely (c0q1, s0q2)T , Q1, and Q2. Thus, we use these three files instead of the
whole matrix Q as input of matrix multiplication algorithm in this paper. Given a specific matrix
partitioning strategy, as we read input data from matrix Q row by row, we can obtain the row and
column offset of the first element of each row in the original matrix and then map all the elements
in a row to a specific block belonging to the matrix. After replication, different parts of operating
matrices are distributed to different nodes in the network.

Now we consider the case of matrix U . According to block matrix multiplication algorithm, we
know that each column block of matrix U requires NIB times of replication and the ith copy of
the block has to be multiplied by the ith row block of matrix Q. However, we find that there exist
zero blocks in each row block of matrix Q, which causes such situations where a lot of blocks
in matrix U are multiplied by zero blocks in matrix Q. To avoid ineffective block replication and
transfer of matrix U as well, we only select partial blocks in each column block of matrix U to
be replicated as we perform the ith copy of the whole column block. For example, assume that
matrix Q is divided into NIB row blocks and NJB column blocks where NIB > 2 and NJB > 2
respectively. Obviously, U1,NJB is a zero block, as we perform the first copy of each column block
in matrix U , the last row block won’t get replicated. This process is shown in Figure 11.

Therefore, we can improve the performance of matrix multiplication in distributed environment
by approximately 50% in theory. The pseudo code of revised block matrix multiplication in
MapReduce framework is shown as Algorithm 2. Let I × J matrix and J ×K matrix be one
block of matrices Q and U respectively, and we assume that matrices Q and U are divided into
NIB ×NJB and NJB ×NKB blocks for each row and column respectively.
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Algorithm 2 QU matrix multiplication in MapReduce
1: Map Input: Matrix file: (c0q1, s0q2)T , Q1, Q2, U
2: I1 ← numberofRowBlocksofQ1
3: I2 ← numberofRowBlocksofQ2
4: J1 ← numberofColumnBlocksof(c0q1, Q1)
5: J2 ← numberofColumnBlocksofQ2

6: if from file U then
7: for i← 0 to I1 do
8: Output the first J1 Row Blocks of Value Row.
9: end for

10: for i← 0 to I2 do
11: Output the first element and the last J2 Row Blocks of Value Row.
12: end for
13: else
14: for each element v in Value do
15: Calculate its Block Location in Matrix Q;
16: Output the element with the block location.
17: end for
18: end if
19: Reduce Input: Row Blocks of Matrix Q and Column Blocks of Matrix U
20: Multiply each block of one Row Blocks in Matrix Q by corresponding block of one Column Blocks in Matrix U ,

Obtain one result Block Matrix.
21: Output result Block Matrix.

6. EXPERIMENT

In this section, we demonstrate the effectiveness of our proposed divide-and-conquer SVD algorithm
based on MapReduce. We conduct all our experiments in a cluster that contains 32 physical nodes.
Each node has two 8-core processors (2.60GHz) and 64GB of RAM. We use JAVA 1.7 as the
programming language and deploy distributed computation framework Hadoop 1.0.3 on this cluster
with each node configured to run 8 map tasks and 8 reduce tasks simultaneously. We set the block
size of HDFS to 192MB. Notice in this section again, when we mention the size of matrix is N , we
mean to have a N × (N − 1) matrix in our experiment.

6.1. Overall Performance

Figure 12. Overall performance Figure 13. Ratio of time cost for each step

Figure 12 shows the overall performance of MapReduce based divide-and-conquer singular value
decomposition algorithm. The settings of mappers and reducers for different steps in this experiment
are shown in Table I, in which ”Div”, ”Iter”, ”Per”, ”Sec”, ”UV”, and ”Matr” denote the step of
divide, first stage iteration, matrix permutation, secular equation solving, z vector revising, uv vector
computation, and matrix multiplication, respectively. The threshold s1 when the first stage transmits
to the second stage is set to 2500, and leaf matrix size is set to 300 for all matrix size. We can see
from Figure 12 that as the size of matrix increases, the computation time of our algorithm increases
gracefully. However, compared toO(N3) time complexity of SVD algorithm, our implementation in
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MapReduce framework only shows approximately linear growing trend in computation time, which
proves that when dealing with large-scale SVD matrix processing, our algorithm can successfully
distribute the workload to more machines and take advantage of parallelism. Another important
reason which contributes to this growing trend is that given a fixed leaf matrix size as the threshold
for our divide algorithm, the larger matrix size produces higher binary tree. Hence, the advantage of
pipelined multi-job based task scheduling for the second stage is more enhanced.

Figure 13 shows the execution time of different steps in SVD algorithm compared to the total
execution time. It is clear that the merging procedure of SVD algorithm dominates the total
execution time. This percentage is 99% when the matrix size reaches 50000. This phenomenon
is mainly due to the fact that when the merging procedure moves towards the upper level of the
binary tree, the dimension of matrix doubles, which results in 4 times increase of memory space for
matrix storage and 8 times increase of computation time respectively. Even though the number
of merge tasks is halved at the upper level of the binary tree, the computation time of larger
matrix significantly increases compared to smaller matrix in the binary tree. Therefore, when the
matrix grows to a large size, the height of the binary tree is high, and more computation time for
merging tasks is required. Another obvious trend we notice from this figure is the computation time
for matrix multiplication step. When the matrix size is 5000, the matrix multiplication operation
takes only slightly more than 20% of the total time. However, when the matrix size grows to
50000, this fraction is 60%. This trend mainly results from the highest time complexity O(N3)
of matrix multiplication operation among all steps. In addition, the characteristics of block matrix
multiplication in MapReduce framework determine that large numbers of block matrix replications
are required when the matrix size is large enough given a fixed block matrix dimension, which
causes large amount of native I/O and network transformation. Other steps including first stage
iteration, matrix permutation, secular equation solving, z vector revising and uv vector computation
all achieve high performance, which occupy only small fraction of total execution time.

Table I. Settings of number of mappers and reducers for each step

Step Mapper Reducer
Div 20 10
Iter 20 10
Per – 10
Sec 20 10
UV 20 –
Matr – 70

Table II. Comparison on performance, in seconds, of different types of operations according to different
number of mappers(m) and reducers(r)

Step Matrix Size
10000 20000 30000 40000 50000 m r

Div
34 37 39 45 53 10 10
34 37 40 42 48 20 10
35 35 41 43 46 30 10

Iter
37 38 38 40 40 10 10
39 38 38 40 39 20 10
38 34 37 41 34 30 10

Per
54 56 87 125 143 - 10
58 59 70 96 131 - 20
51 51 59 82 115 - 30

Sec
44 45 55 70 85 10 10
44 44 50 56 68 20 10
38 39 45 51 58 30 10

UV
37 73 141 231 354 10 10
40 72 130 214 316 20 10
40 76 126 188 198 30 10
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Table II shows the comparison result on execution time of all steps except matrix multiplication
for different settings of mappers or reducers, in which ”m” and ”r” denote the numbers of mappers
or reducers we set to run these steps in MapReduce. The input of matrix permutation step is SVD
result of two sub-problems, so the size of input file for this step is much larger than any other steps.
Consequently, the number of mappers in this step is basically determined by the size of input file
based on the running mechanism of MapReduce framework. Therefore, we measure how different
settings of reducers affect the performance for this step. For other steps, since the size of input file is
much smaller and most of computation work is done in map tasks, we only measure how different
setting of mappers affect the performance of these steps. The number of reducers is set to 10 for these
steps. From this table, we can clearly see that most steps achieve satisfactory performance. It takes
less than 6 mins to finish all these steps. Also, we discover that adding more mappers or reducers
for these steps doesn’t contribute to the improvement of performance significantly. For matrix size
30000, the computation time of divide step is quite stable for all settings of mappers, and it doesn’t
take much less time for uv vector step by adding more mappers. It is because the computation
of each task for these steps is quick and adding more map tasks or reduce tasks doesn’t provide
more effective computation power. In addition, launching more tasks causes additional overhead
including task startup cost and network transfer of intermediate data during the shuffle phase.

6.2. Adaptability analysis

In this section, we analyze two important parameters related to our MapReduce based divide-
and-conquer SVD algorithm. First, we measure how different settings of s1 affect the overall

Figure 14. Performance result of different
settings of s1

Figure 15. Experiment result of different
settings of leaf matrix size

performance of divide-and-conquer SVD algorithm. In this experiment, the setting of mappers and
reducers for each step is the same with the setting in Section 6.1. The minimal size of leaf problem
is set to 50. Figure 14 shows the results of performances for matrix ranging from 10000 to 30000.
For all cases, the performances first improve to a considerable extent when s1 increases, and then
decline dramatically as s1 grows to a large size. Given a fixed large matrix size and a small leaf
matrix size, when s1 is small, the number of iterations for first stage is also small, which leads
to a situation where a large number of mapreduce jobs are launched to merge small sub-problems
when the second stage just begins. When SVD results of small sub-problems are taken as input for a
MapReduce job in the second stage, all map tasks and reduce tasks execute very quickly, so the costs
of task startup and I/O operation during the job execution dominate the overall performance for one
particular job. Thus, these accumulative overhead slows down the performance of overall algorithm.
When s1 is large, the last iteration of first stage parallelization has to deal with the merge task of
large sub-problems. Obviously, running the merge process for large sub-problems in a single task of
a MapReduce job leads to extremely low parallelization of overall algorithm, which definitely harms
the overall performance. Finding the best s1 for each matrix size is difficult, because the overall
performance is influenced by many other parameters such as number of mappers and reducers.
From the experimental results, well balance can be achieved when s1 is between 1000 and 3000.
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Figure 15 shows how different settings of leaf matrix size affect the performance of overall divide-
and-conquer SVD algorithm. We set s1 to 2500, and the matrix size we measure here ranges from
10000 to 30000. For a fixed size of matrix, different settings of leaf matrix size directly determine
the height of the binary tree, and more precisely, the number of levels for the first stage iteration.
For matrix size 30000, the number of iterations required for the first stage is 5 and 1 when we set
the leaf matrix size to 58 and 938, respectively. We can see from this figure that in different cases,
when the leaf matrix size is less than 1000, the gap of performances for these settings is quite small.
It is because when the matrix size is below 1000, one merge task for two sub-problems runs quite
fast in the first stage. It generally takes less than 1 minute for each iteration in the first stage. Even
though more iterations consumes slightly more running time compared to total time cost of overall
algorithm, the execution time of level by level iterations only occupies a small portion and the
overall performance is not sensitive to the settings of leaf matrix size. However, as the leaf matrix
size grows greater than 1500 when all the parallelization work is done in second stage, we notice
a sharp increase of total execution time for all matrix size. This phenomenon can be explained by
several reasons. First, if leaf matrix is set to a large size, the number of sub-problems in the binary
tree is small, leading to a low parallelization of overall algorithm. Second, the computation time of
QR iteration is quite sensitive to the size of the matrix. Obviously, when the leaf matrix is large, the
computation of QR iteration for leaf matrix becomes the bottleneck of overall algorithm.

6.3. Matrix multiplication performance

In this section, we evaluate the efficiency of our proposed revised block matrix multiplication
in MapReduce framework. We first look into how the number of reducers and block size affect
the performance of block matrix multiplication in MapReduce framework. Then we compare the
performance of our revised block matrix multiplication with basic block matrix multiplication.
Notice that we have to perform two matrix multiplications for the last step of divide-and-conquer
SVD algorithm. Therefore, we run two jobs of matrix multiplication simultaneously to measure
actual performance of matrix multiplication step of divide-and-conquer SVD algorithm. Figure 16

Figure 16. Experiment result for different
settings of reducers of revised block

matrix multiplication

Figure 17. Experiment result for different
settings of block size of revised block matrix

multiplication

shows the relationship between the performance and different settings of number of reducers for
different size of matrices. The block size is set to 1200. The number of mappers is controlled by
MapReduce framework automatically according to the size of input file. The computation time first
decreases greatly as the number of reducers increases, because we can achieve more parallelism
when we increase the number of reducers. However, as the number of reducers grows bigger, the
overall computation time no longer decreases or even increases at certain points. For example, when
the number of reducers is set to 100, 200 map tasks will be launched in our environment. Large
amount of reducers being launched means less work assigned to each reducer task but still with
fixed startup cost for each reduce task. In addition, large number of reducers running simultaneously
causes more network traffic during the shuffle phase and more native I/O competition when the
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reduce tasks running on the same physical node read their intermediate results from native physical
nodes. Figure 17 shows the effect of various size of block matrix on the performance of matrices

Figure 18. Performance comparison between basic block matrix multiplication and revised block matrix
multiplication

of different size. The number of reducers is set to 70 for matrices in this experiment. We can see
from this figure that the overall computation time decreases first when the block size grows bigger.
According to Figure 10, when the block matrix size is relatively small, the number of replication
for each block is relatively big. Then map tasks have to do very heavy replication work for each
block and then send the intermediate results to reducers. Hence, native I/O in the physical nodes
running map tasks and network transfer has great impact on the performance. Unfortunately, as the
block size further increases, we can see that the cost of time start to increase. For a fixed size of
matrix, increasing block size results in less parallelism for matrix multiplication and each reducer
task has to do more computation work. Therefore, we can conclude that there is a tradeoff between
the overhead of map tasks for matrix replication and the parallelism of block matrix computation.

Figure 18 shows the comparison result of performance between basic block matrix multiplication
and our proposed revised block matrix multiplication for different size of matrix. The number of
reducers is set to 70 and the size of block matrix is set to 1200. It is clear that our proposed method
significantly outperforms basic block matrix multiplication in MapReduce framework. When the
matrix size is relatively small, the time cost of our revised block matrix multiplication algorithm is
approximately half of the basic block matrix multiplication algorithm. Moreover, for large matrix
such as 50000, basic block matrix multiplication gradually shows its bottleneck in our experiment
environment. Recall that for our revised block matrix multiplication, we only take non-zero elements
as input of our algorithm. When matrix size is 50000, 388 map tasks will be launched for two
basic block matrix multiplication in MapReduce, which greatly exceeds the total map slots of our
experiment environment and causes network congestion, while running our revised block matrix
multiplication algorithm calls for 290 map tasks.

7. CONCLUSION AND FUTURE WORK

In this paper, we have presented a new MapReduce based approach to solve divide-and-conquer
SVD algorithm. Compared to previous implementations of SVD in MapReduce model, our
implementation aims to solve full rank SVD computation for general matrices in MapReduce.
Our implementation takes advantage of characteristics of divide-and-conquer SVD algorithm and
achieves excellent parallelism in MapReduce framework.

Although we adopt Hadoop1.0 as our experiment environment in this paper, our implementation
can be easily transplanted to any distributed computing platforms that support MapReduce
programming model like Yarn and Spark. Compared to Hadoop1.0 platform, these big data
processing platforms have made a lot of improvement to significantly reduce I/O operation during
the execution of MapReduce jobs. In addition, for a heterogeneous running environment, it is really
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interesting to explore a mathematical model to predict the performance of our algorithm according
to the diversity of hardware condition of experiment cluster.
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